Koyana Education Society's

Balasaheb Desai College ,Patan

Monthly Teaching Plan

2023-2024

 ${\bf Subject}-{\bf Mathematics}$

Class -B.Sc.-III

Paper – Metric Space

Month-

December

Name of the teacher: Miss N. G. Nalawade

Date	Unit / Subunit	Teaching Plan
18/12/2023	UNIT –1 LIMITS AND CONTINUOUS FUNCTIONS ON METRIC SPACES Revision: Limits of a function on the real line. Metric space: Definition of Metric space and Examples R_1 , R_d , R^n , 1^∞ and 1^2 .	Revision and Lecture
19/12/2023	#Limits in metric spaces . Definition of $\lim x \to a \ f(x) = L$, If $\lim x \to a \ f(x) = L$ and $\lim x \to a \ g(x) = N$ then (i) $\lim x \to a \ f(x) + g(x)$; $\lim x \to a \ f(x) - g(x)$; $\lim x \to a \ f(x) + g(x)$; (ii) $\lim x \to a \ f(x) - g(x)$; $\lim x \to a \ f(x) + g(x)$; $\lim x \to a \ f(x)$; $\lim x \to a \$	Lecture
20/12/2023	Definition: Sequences and their convergence in metric space, Cauchy sequence in metric space. Theorems with statement and proof.	Lecture
21/12/2023	#Functions continuous at a point on the real line. Definition: Continuity of a function . Theorem: If real valued functions f and g are continuous at $a \in R_1$, then so are $f + g$, $f - g$, $f * g$, f / g , $f \circ g$, cf , $ f $ where, $c \in R$ at a .	Lecture
23/12/2023	#Reformulation - Theorem: The real valued function f is continuous at $a \in R_1$ if and only if given $\epsilon > 0$ there exists $\delta > 0$ such that $ f(x) - f(a) < \epsilon$ when $ x - a < \delta$. Definition: The open ball of radius r about a. Theorem: The real valued function f is continuous at $a \in R_1$ if and only if the inverse image under f of any open ball $B[f(a); \epsilon]$ about f (a) contains an open ball $B[a;\delta]$ about a.	Lecture

Theorem: A function f is continuous at a , iff if $\lim n\to\infty$ xn = a $\Rightarrow \lim n\to\infty$ f $;$ $;$ $;$ $;$ $;$ = f(a) .# Functions continuous on a metric space . Definition: The open ball of radius r about a in a metric space. Definition: Continuity of function defined on a metric space Theorem: The function f is continuous at a \in M1 if and only if any one of the following conditions hold (i) Given \in > 0, there exists δ > 0 such that ρ 2 (f(x), f(a)) < \in when ρ 1 (x, a) < δ . (ii) The inverse image under f of any open ball B[f(a); \in] about f(a) contains an open ball B[a; δ] about a. (iii) Whenever $\{xn\}_{n=1}^{\infty}$ is a sequence of points in M1 converging to a ,then the sequence $\{f(xn)\}_{n=1}^{\infty}$ of points in M2 converging to f (a) . 28/12/2023 Theorem: If f is continuous at $a\in$ M1 and g is continuous at f (a) \in M2,then g o f is continuous at a. Theorem: Let M be a metric space, an Let f and g be real valued functions which are continuous at a \in M, then so are $f \in$ g, f g, f g, f at a.
metric space . Definition: The open ball of radius r about a in a metric space. Definition: Continuity of function defined on a metric space
a metric space. Definition: Continuity of function defined on a metric space
27/12/2023 Theorem: The function f is continuous at $a \in M_1$ if and only if any one of the following conditions hold (i) Given $\in > 0$, there exists $\delta > 0$ such that $\rho 2$ ($f(x)$, $f(a)$) $< \varepsilon$ when $\rho 1$ (x , a) $< \delta$. (ii) The inverse image under f of any open ball B[$f(a)$); \in] about $f(a)$ contains an open ball B[$f(a)$] about $f(a)$ whenever $f(a)$ $f(a)$ as sequence of points in $f(a)$ converging to $f(a)$. 28/12/2023 Theorem: If $f(a)$ is continuous at $f(a)$ $f(a$
27/12/2023 Theorem: The function f is continuous at a $\in M_1$ if and only if any one of the following conditions hold (i) Given $\in > 0$, there exists $\delta > 0$ such that $\rho 2$ ($f(x)$, $f(a)$) $< \in$ when $\rho 1$ (x , a) $< \delta$. (ii) The inverse image under f of any open ball B[$f(a)$; \in] about $f(a)$ contains an open ball B[a ; δ] about a . (iii) Whenever $\{xn_1\}_{n=1}^{\infty}$ is a sequence of points in M_1 converging to a , then the sequence $\{f(xn_1)\}_{n=1}^{\infty}$ of points in M_2 converging to $f(a)$. 28/12/2023 Theorem: If $f(a)$ is continuous at $f(a)$ and $f(a)$ is continuous at $f(a)$ is continuous at $f(a)$ and $f(a)$ is co
27/12/2023 Theorem: The function f is continuous at a $\in M_1$ if and only if any one of the following conditions hold (i) Given $\in > 0$, there exists $\delta > 0$ such that $\rho 2$ ($f(x)$, $f(a)$) $< \in$ when $\rho 1$ (x , a) $< \delta$. (ii) The inverse image under f of any open ball B[$f(a)$; \in] about $f(a)$ contains an open ball B[a ; δ] about a . (iii) Whenever $\{xn_1\}_{n=1}^{\infty}$ is a sequence of points in M_1 converging to a , then the sequence $\{f(xn_1)\}_{n=1}^{\infty}$ of points in M_2 converging to $f(a)$. 28/12/2023 Theorem: If $f(a)$ is continuous at $f(a)$ and $f(a)$ is continuous at $f(a)$ is continuous at $f(a)$ and $f(a)$ is co
if any one of the following conditions hold (i) Given $\in > 0$, there exists $\delta > 0$ such that $\rho 2$ ($f(x)$, $f(a)$) $< \in$ when $\rho 1$ (x , a) $< \delta$. (ii) The inverse image under f of any open ball B[$f(a)$; \in] about $f(a)$ contains an open ball B[a ; δ] about a . (iii) Whenever $\{xn\}_{n=1}^{\infty}$ is a sequence of points in M_1 converging to a , then the sequence $\{f(xn)\}_{n=1}^{\infty}$ of points in M_2 converging to $f(a)$. 28/12/2023 Theorem: If f is continuous at $a \in M_1$ an g is continuous at f (a) e M $_2$, then g of f is continuous at f . Theorem: Let f be a metric space, an Let f and g be real valued functions which are continuous at f f then so are
there exists $\delta > 0$ such that $\rho 2$ ($f(x)$, $f(a)$) $< \varepsilon$ when $\rho 1$ (x , a) $< \delta$. (ii) The inverse image under f of any open ball B[$f(a)$; ε] about $f(a)$ contains an open ball B[a ; δ] about a . (iii) Whenever $\{xn\}_{n=1}^{\infty}$ is a sequence of points in M_1 converging to a , then the sequence $\{f(xn)\}_{n=1}^{\infty}$ of points in M_2 converging to $f(a)$. 28/12/2023 Theorem: If f is continuous at $a \in M_1$ an g is continuous at $f(a) \in M_2$, then g of is continuous at a . Theorem: Let $f(a) \in M_2$, then $f(a) \in M_2$ and $f(a) \in M_2$ then $f(a) \in M_2$, then $f(a) \in M_2$ and $f(a) \in M_2$ then
 < δ. (ii) The inverse image under f of any open ball B[f(a); ∈] about f(a) contains an open ball B[a;δ] about a. (iii) Whenever {xn} **\cap m=1 is a sequence of points in M1 converging to a ,then the sequence {f(xn)}*\cap m=1 of points in M2 converging to f(a). 28/12/2023 Theorem: If f is continuous at a∈M1 ang is continuous at f (a)∈M2,then g of is continuous at a. Theorem: Let M be a metric space, an Let f and g be real valued functions which are continuous at a∈M, then so are
 < δ. (ii) The inverse image under f of any open ball B[f(a); ∈] about f(a) contains an open ball B[a;δ] about a. (iii) Whenever {xn} **\cap m=1 is a sequence of points in M1 converging to a ,then the sequence {f(xn)}*\cap m=1 of points in M2 converging to f(a). 28/12/2023 Theorem: If f is continuous at a∈M1 ang is continuous at f (a)∈M2,then g of is continuous at a. Theorem: Let M be a metric space, an Let f and g be real valued functions which are continuous at a∈M, then so are
Whenever $\{xn\}_{n=1}^{\infty}$ is a sequence of points in M_1 converging to a ,then the sequence $\{f(xn)\}_{n=1}^{\infty}$ of points in M_2 converging to $f(a)$. 28/12/2023 Theorem: If f is continuous at $a \in M_1$ an g is continuous at f (a) $\in M_2$,then g of is continuous at a .Theorem: Let M be a metric space, an Let f and g be real valued functions which are continuous at $a \in M$, then so are
to a ,then the sequence $\{f(xn)\}_{n=1}^{\infty}$ of points in M_2 converging to $f(a)$. 28/12/2023 Theorem: If f is continuous at $a \in M_1$ an g is continuous at f (a) $\in M_2$,then g of is continuous at a .Theorem: Let M be a metric space, an Let f and g be real valued functions which are continuous at $a \in M$, then so are
28/12/2023 Theorem: If f is continuous at $a \in M_1$ an g is continuous at f (a) $\in M_2$, then g o f is continuous at a .Theorem: Let M be a metric space, an Let f and g be real valued functions which are continuous at a $\in M$, then so are
(a) \in M ₂ ,then g o f is continuous at a .Theorem: Let M be a metric space, an Let f and g be real valued functions which are continuous at a \in M, then so are
(a) \in M ₂ ,then g o f is continuous at a .Theorem: Let M be a metric space, an Let f and g be real valued functions which are continuous at a \in M, then so are
metric space, an Let f and g be real valued functions which are continuous at a \in M , then so are
are continuous at a $\in M$, then so are
f + g, $f - g$, fg , f / g , $ f $ at a.
- 8, - 8, - 8, - - - -
29/12/2023 Definition of continuity of a function $f: M_1 \rightarrow M_2$. Theorem: Lecture and
If f and g be continuous functions from a metric space M ₁ problem
into a metric space M_2 , then so are $f + g$, $f - g$, $f = g$, $f = g$, $f = g$, $f = g$, solving
on M_1 . Open sets. Definition: Open set and examples
30/12/2023 Theorem: Any open ball in a metric space is an open set. Lecture
Theorem : In any metric space $<$ M, $\rho >$, both M and \emptyset are
open sets. Theorem: Arbitrary union of open sets is open.
Theorem: Every subset of Rd is open. Theorem: Finite
intersection open sets is open.
r · · · · · · · · · · · · · · · · · · ·

Department of Mathematics Balasaheb Desai College, Patan Dist. Satara 415 206