Balasaheb Desai College, Patan

Monthly Teaching Plan

2023-2024

Subject Name: Mathematics Class: B. Sc-I

Paper Name: Month: Mar-24

Date	Unit/Subunit	Teaching Method
01/03/24	Slip explanation of B. Sc I Practical	1
02/03/24		
То	External examiner for T. Y. B. Sc. practical examination	
15/03/24	(Y. C. C. S. Karad, S. B. M. M, Rahimatpur, S. G. M, Karad)	
16/03/24	Slip explanation B. Sc II Practical	
18/03/24	Preparation of B. Sc II practical Examination	
19/03/24	B. Sc II practical examination	
to		
22/03/24		
23/03/24	Preparation of B. Sc II theory paper setting	
24/03/24	Preparation of B. Sc II theory paper setting	
25/03/24	External examiner for S. Y. B. Sc. practical examination	
to	(Y. C. College of Science, Karad)	
28/03/24		
29/03/24	Preparation of B. Sc II theory paper setting	
30/03/2024	B. Sc II Theory paper setting	

Balasaheb Desai College, Patan

Monthly Teaching Plan

2023-2024

Subject Name: Mathematics Class: B. Sc-II

Paper Name: Month: Mar-24

Date	Unit/Subunit	Teaching Method
01/03/24	Slip explanation of B. Sc I Practical	1
02/03/24		
То	External examiner for T. Y. B. Sc. practical examination	
15/03/24	(Y. C. C. S. Karad, S. B. M. M, Rahimatpur, S. G. M, Karad)	
16/03/24	Slip explanation B. Sc II Practical	
18/03/24	Preparation of B. Sc II practical Examination	
19/03/24	B. Sc II practical examination	
to		
22/03/24		
23/03/24	Preparation of B. Sc II theory paper setting	
24/03/24	Preparation of B. Sc II theory paper setting	
25/03/24	External examiner for S. Y. B. Sc. practical examination	
to	(Y. C. College of Science, Karad)	
28/03/24		
29/03/24	Preparation of B. Sc II theory paper setting	
30/03/2024	B. Sc II Theory paper setting	

Balasaheb Desai College, Patan

Monthly Teaching Plan

2023-2024

Subject Name: Mathematics Class: B. Sc-II

Paper Name: Month: Mar-24

Date	Unit/Subunit	Teaching Method
01/03/24	Slip explanation of B. Sc I Practical	-
02/03/24		
То	External examiner for T. Y. B. Sc. practical examination	
15/03/24	(Y. C. C. S. Karad, S. B. M. M, Rahimatpur, S. G. M, Karad)	
16/03/24	Slip explanation B. Sc II Practical	
18/03/24	Preparation of B. Sc II practical Examination	
19/03/24	B. Sc II practical examination	
to		
22/03/24		
23/03/24	Preparation of B. Sc II theory paper setting	
24/03/24	Preparation of B. Sc II theory paper setting	
25/03/24	External examiner for S. Y. B. Sc. practical examination	
to	(Y. C. College of Science, Karad)	
28/03/24		
29/03/24	Preparation of B. Sc II theory paper setting	
30/03/2024	B. Sc II Theory paper setting	

Balasaheb Desai College ,Patan

Monthly Teaching Plan

2023-2024

 ${\bf Subject}-{\bf Mathematics}$

Class –B.Sc - III

Paper – Metric Space

 $\boldsymbol{Month}-January$

Name of the teacher: Miss N. G. Nalawade

Date	Unit / Subunit	Teaching Plan
01/01/2024	Theorem: Every open subset G of R^1 can be written as $G = U \ l_n$ where I_1, I_2, \ldots are a finite number or a countable number of open intervals which are mutually disjoint. Theorem: A function is continuous if and only if inverse image of every open set is open. # Closed sets- Definition: Limit point, closure of a set. Theorem: If E is any subset of the metric space M , then $E \subset E$. Definition: Closed set. Theorem: Let E be a subset of the metric space E and E and only if every open ball E about E and only if every open ball E are an every open ball E and only if every open ball E and E and E are in the every open ball E and E are interest.	Lecture
02/01/2024	Theorem: Let E be a subset of the metric space M, then E is closed. Theorem: In any metric space $<$ M, $\rho>$, both M and \emptyset are closed sets. Theorem: Arbitrary intersection of closed sets is closed. Theorem: Finite union of closed sets is closed. Theorem: Let G be an open subset of the metric space M. Then G' = M – G is closed. Conversely, if F is a closed subset of M, then F' = M – F is open.	Lecture
03/01/2024	Theorem: Let $< M_1$, $\rho_1 >$ and $< M_2$, $\rho_2 >$ be metric spaces., and let $f:M_1 \to M_2$. Then f is continuous on M_1 if and only if $f^{-1}(F)$ is a closed subset of M_1 whenever F is a closed subset of M_2 . Theorem: Let f be a 1-1 function from a metric space M_1 onto a metric space M_2 . Then if f has any one of the following properties, it has them all. (i) Both f and f^{-1} are continuous (on M_1 and M_2 , respectively). (ii) The set $G \subset M_2$ is open if and only if its image $f(G) \subset M_2$ is open. (iii) The set $F \subset M_1$ is closed if and only if its image $f(F)$ is closed.	Lecture
04/01/2024	# Definition : Homeomorphism, dense subset of a metric space. Show that R ¹ and R _d are not homeomorphic. Examples	Lecture and Problem solving
07/01/0002024	UNIT 2- CONNECTEDNESS, COMPLETENESS, COMPACTNESS AND SOME PROPERTIES OF CONTINUOUS FUNCTIONS ON METRIC SPACE # More about open sets . Theorem: Let <m,<math>\varrho> be a metric space and Let A be a proper subset of M. Then the subset G_A of A is an open subset of<a,<math>\varrho> if and only if there exists an open subset G_M of<m,<math>\varrho>such that $G_A = A \cap G_M$.</m,<math></a,<math></m,<math>	Revision and Lecture

08/01/2024	Connected sets - Theorem : Let be a metric space Let A be a subset of M . Then if A has either one of the following properties it has the other. (a) It is impossible to find nonempty. subsets A_1 , A_2 of M such that $A = A_1 \cup A_2$, $A_1 \cap A_2 = \emptyset$, $A_1 \cap A_2 = \emptyset$. (b) When $A_1 \cap A_2 = \emptyset$ is itself regarded as metric space, then there is no set expect A an \emptyset which is both open and closed in $A_1 \cap A_2 = \emptyset$. Definition: Connected set. Theorem : The subset A of $A_1 \cap A_2 \cap A_1 \cap A_2 \cap A_2 \cap A_2 \cap A_1 \cap A_2 \cap $	Lecture
	connected if and only if whenever $a \in A$, $b \in A$ with $a < b$, then $c \in A$ for any such that $a < c < b$. Theorem: A continuous function carries connected sets to connected sets. Theorem: If f is a continuous real valued function on the closed bounded interval [a, b], then f takes on every value between f (a) an f (b).	
10/01/2024	Theorem : A metric space is connected if and only if every continuous characteristic function on it is constant. Theorem : If A_1 an A_2 are connected subsets of a metric space M and if $A_1 \cap A_2 \neq \emptyset$, then $A_1 \cup A_2$ is also connected . Theorem : The interval $[0,1]$ is not connected subset of R_d . # Bounded and totally bounded sets. Definition: Bounded subset of metric space, totally bounded sets. Theorem : Every totally bounded set is bounded. Theorem : A subset A of d R is totally bounded if and if A contains only a finite number of points.	Lecture
11/01/2024	Definition: ε - dense set. Theorem: The subset A of the metric space $\langle M, \varrho \rangle$ is totally bounded if and only if for every $E > 0$, A contains a finite subset $\{x_1, x_2, \dots x_n\}$ which is ε - dense in A. Theorem: Let $\langle M, \varrho \rangle$ be a etric space. The subset A of M is totally bounded if and only if every sequence of points of A contains a cuachy subsequence.	Lecture
12/01/2024	#Complete metric space. Definition: Complete metric space. Theorem: If $\langle M,\varrho \rangle$ be a complete metric space, and A is a closed subset of M, then $\langle A,\varrho \rangle$ is also complete. Statement and proof of Generalization of nested interval theorem. Definition: Contraction operator. Theorem: Let $\langle M, \rho \rangle$ be a complete metric space. If T is a contraction on M, then there is one and only one point x in M such that $Tx = x$. Theorem: R_d is complete and R^2 is complete. Examples	Lecture and solving examples
13/01/2024	#Compact metric spaces -Definition: Compact metric space. Theorem: The metric space <m,q> is compact if and only if every subsequence of points in M has a subsequence covering to a point in M. Theorem: A closed subset of a compact metric space is closed. Theorem: Every compact metric space of a metric space is closed.</m,q>	Lecture
14/01/2024	Definition: Covering and open covering. Theorem: If M is a compact metric space, then M has has the Heine- Borel Property. Theorem: If a metric space M has Heine-Borel Property, the M is compact.	Lecture
15/01/2024	Definition: Finite intersection property. Theorem: The metric space M is compact if and only if, whenever F is afamily of closed subsets of M with finite intersection property, then $\xi \in F \in F \neq \emptyset$. Theorem: Finite subset of any any metric space is compact.	Lecture

16/01/2024	#Continuous functions on compact metric space. Theorem: Let f be a continuous function of the compact metric space M_1 into a metric space M_2 . Then the range $f(M_2)$ of f is also compact. Theorem: Let f be a continuous function of the compact metric space M_1 into a metric space M_2 . Then the range $f(M_2)$ of f is a bounded subset of M_2 .	Lecture
17/01/2024	Definition: Bounded function. Theorem: If the real valued function f is continuous on a closed bounded interval in R ¹ , then f must be bounded. Theorem: If the real valued function f is continuous on the compact metric space M, then f attains a maximum value at some point of M. Also, f attains a minimum value at some point of M.	Lecture
18/01/2024	Theorem: If the real valued function f is continuous on a closed bounded interval [a,b], then f attains a maximum and minimum value at some point of [a,b]. Theorem: If f is a continuous real valued function on the compact connected metric space M, then f takes on every value between its minimum value and its maximum value.	Lecture
19/01/2024	Problem solving	Problem solving