Balasaheb Desai College, Patan Monthly Teaching Plan

2023-2024

Subject Name: Mathematics Class: B. Sc-I

Paper Name: Algebra Month: Feb-24

Date	Unit/Subunit	Teaching Method
01/02/24	Examples on division algorithm	Problem solving
02/02/24	Concept of G. C. D & L. C. M.	Lecture
03/02/24	Examples on G. C. D & L. C. M.	Problem solving
05/02/24	Euclidean algorithm & examples	Lecture
06/02/24	Fundamental theorem of Arithmetic	Lecture
07/02/24	Theory of congruence	Lecture
09/02/24	Properties of congruence	Lecture
10/02/24	Properties of congruence	Lecture
	Unit 2 Complex Numbers	
11/02/24	Revision: Def of complex Numbers, sums & products etc.	Lecture
12/02/24	Concepts: moduli, conjugate, polar representation etc.	Lecture
13/02/24	De Moivre's theorem: Statement & proof	Induction
14/02/24	Concept of nth roots of unity	Lecture
15/02/24	Examples on applications of complex numbers	Problem solving
16/02/24	Examples on applications of complex numbers	Problem solving
17/02/24	Exponential form of complex number & examples	Problem solving
21/02/24	Logarithm of complex numbers	Lecture
22/02/24	Examples on Logarithm of complex numbers	Problem solving
23/02/24	Hyperbolic functions & identities	Lecture
24/02/24	Examples on Hyperbolic functions & identities	Problem solving
25/02/24	Relation between circular & hyperbolic functions	Lecture
26/02/24	Hyperbolic equations	Lecture
27/02/24	Inverse hyperbolic functions	Lecture
28/02/24	Examples on Inverse hyperbolic functions	Problem solving
29/02/24	Derivatives of hyperbolic & inverse hyperbolic functions	Lecture

Balasaheb Desai College, Patan Monthly Teaching Plan

2023-2024

Subject Name: Mathematics Class: B. Sc-II

Paper Name: Integral Calculus Month: Feb-24

Date	Unit/Subunit	Teaching Method
01/02/24	Concept of D. U. I. S.	Problem solving
02/02/24	Leibnitz's first rule of D. U. I. S.	Lecture
03/02/24	Examples on first rule	Problem solving
05/02/24	Examples on first rule	Lecture
06/02/24	Examples on first rule	Lecture
07/02/24	Leibnitz's second rule of D. U. I. S.	Lecture
09/02/24	Examples on second rule	Lecture
10/02/24	Examples on second rule	Lecture
	Unit 2 Error function & Multiple Integrals	
11/02/24	Definitions of erf(x) and complementary error function	Lecture
12/02/24	Properties of error functions	Lecture
13/02/24	Properties of error functions	Induction
14/02/24	Examples on error functions	Lecture
15/02/24	Evaluation of double integral in cartesian form	Problem solving
16/02/24	Examples on evaluation of double integral in cartesian form	Problem solving
17/02/24	Evaluation of double integral in polar form	Problem solving
21/02/24	Examples on evaluation of double integral in polar form	Lecture
22/02/24	Evaluation of double integral in cartesian form over given region	Problem solving
23/02/24	Examples on evaluation of double integral in cartesian form over given region	Lecture
24/02/24	Evaluation of double integral by changing order of integration	Problem solving
25/02/24	Examples on above article	Lecture
26/02/24	Change of coordinate system	Lecture
27/02/24	Examples on above article	Lecture
28/02/24	Proof of relation between beta & gamma function	Problem solving
29/02/24	Examples on change of order of integration	Lecture

Balasaheb Desai College, Patan Monthly Teaching Plan

2023-2024

Subject Name: Mathematics Class: B. Sc-II

Paper Name: Integral Calculus Month: Feb-24

Date	Unit/Subunit	Teaching Method
01/02/24	Examples on Conversion of decimal to binary & vicevarsa	Problem solving
02/02/24	Conversion of decimal to octal & visevarsa	Lecture
03/02/24	Examples on Conversion of decimal to octal & visevarsa	Problem solving
05/02/24	Conversion of decimal to hexadecimal & visevarsa	Lecture
06/02/24	Examples on Conversion of decimal to hexadecimal & visevarsa	Problem solving
07/02/24	Examples on above conversions	Problem solving
09/02/24	Examples on above conversions	Problem solving
10/02/24	Examples on above conversions	Problem solving
	Unit 2 Graphs & Trees	
11/02/24	Graph: Definition, basic properties	Lecture
12/02/24	Examples on basic properties	Lecture
13/02/24	Special graphs, directed & undirected graphs	Induction
14/02/24	Concept of degree, trails, paths and circuits	Lecture
15/02/24	Examples on concept of degree, trails, paths and circuits	Problem solving
16/02/24	Euler's circuit	Problem solving
17/02/24	Examples on Euler's circuit	Problem solving
21/02/24	Hamiltonian circuit	Lecture
22/02/24	Examples on Hamiltonian circuit	Problem solving
23/02/24	Matrix representation of graph & examples	Lecture
24/02/24	Isomorphism of graphs & examples	Problem solving
25/02/24	Trees: Definition & examples	Lecture
26/02/24	Rooted tree, binary tree & their properties	Lecture
27/02/24	Spanning trees, minimal spanning trees	Lecture
28/02/24	Kruskal's algorithm, Prim's algorithm	Problem solving
29/02/24	Dijkstra's shortest path algorithm	Lecture

Balasaheb Desai College, Patan

Teaching Plan

2023-2024

Subject Name – Mathematics

Class-B.Sc. III

Paper Name –Linear Algebra

Month -

February

Name of the teacher: Miss N. G. Nalawade

01/02/2024	#Linear Span - Definition of Linear Span and	Lecture and
	Examples. Theorem: (S) is the smallest subspace of V	Problem solving
	containing S. Theorem: If S1 and S2 are subsets of V,	
	then (i) $S1 \subseteq S2 \Rightarrow L(S1) \subseteq L(S2)$ (ii) $L(S1 \cup S2) =$	
	L(S1) + L(S2) (iii) $L(L(S1)) = L(S1)$	
03/02/2024	Theorem: If W is subspace of V then $(W) = W$ and	Lecture and
	conversely. Definition of Finite dimensional vector	Problem solving
	space (F.D.V.S). # Linear dependence, independence	
	and basis. Definition: Linear dependence (L. D.) and	
	independence (L. I.), basis of vector space.	
05/02/2024	Examples of Linear dependence, independence and	Lecture and
	basis. Theorem: If $S = \{v_1, v_2, v_3, \dots, v_n\}$ is a basis of	Problem solving
	V then every element of V can be expressed uniquely as	
	a linear combination of $v_1, v_2, v_3, \dots, v_n$. Theorem:	
	Suppose S is a finite subset of a vector space V such	
	that $V = (S)$ then there exists a subset of S which is a	
	basis of V. Corollary: A F.D.V.S. has a basis	
06/02/2024	Theorem: Let V be a F.D.V.S. Suppose S and T are two	Lecture
	finite subsets of V such that S spans V and T is L . I.	
	Then $(T) \le (S)$. Corollary : Any basis of F.D.V.S. V is	
	finite. Corollary: Any two bases of a F.D.V.S. have	
	same number of elements. Definition of dimension.	
07/02/2024	Corollary: If dim $V = n$, then any $n + 1$ vectors in V	Lecture and
	are linearly dependent. Theorem: (without proof) A	Problem solving
	basis of a vector space is a maximal linearly	
	independent set and conversely every maximal linearly	
	independent set in a vector space is its basis. Corollary:	
	(without proof) Suppose n is the maximum number of	
	L. I. vectors in any subset of a vector space V. Then	
	dim $V = n$. Theorem: (without proof) Let (F) be a	
	vector space. A minimal generating set of V is a basis of	
	V and conversely, every basis of V is a maximal	
	generating set. Theorem: If V is a F.D.V.S. and $\{v_1, v_2, v_3, v_4, v_5\}$ is a L.L. subset of V , then it can be extended	
	v_3, \ldots, v_r is a L.I. subset of V , then it can be extended	
	to form a basis of V.	

00/02/25 ::	T	T
09/02/2024	Theorem: If dim $V = n$ and $S = \{v_1, v_2, v_3,, v_n\}$ spans V , then S is a basis of V Theorem: If dim $V = n$ and $S = \{v_1, v_2, v_3,, v_n\}$ is a L.I. subset of V , then S is a basis of V Theorem: (without proof) Two finite dimensional vector spaces over F are isomorphic if and only if they have the same dimension Thorem:	Lecture and Problem solving
	(without proof) Let W be a subspace of a F.D.V.S. V , then W is finite dimensional and $dim\ W \le dim\ V$. In fact, $dim\ V = dim\ W$ iff $V = W$.	
10/02/2024	#Properties of Linear Transformation. Theorem: A L.T. $T: V \to V$ is one – one iff T is onto. Theorem: Let V and W be two vector spaces over F . Let $\{v_1, v_2, \ldots, v_r\}$ be a basis of V and w_1, w_2, \ldots, w_n be any vectors in W (not essentially distinct). Then there exists a unique L.T. $T: V \to W$ such that $() = w$; $i = 1, 2, \ldots, n$ Definition of rank and nullity of a linear	Lecture and Problem solving
	transformation. Theorem: (Sylvester's Law) Let $T: V \to W$ be a linear transformation. Then $Rank \ T + Nullity \ T = dim \ V$. Theorem: If $T: V \to V$ be a L.T., then the following statements are equivalent. i) $Range \ T \cap Ker \ T = \{0\}$ ii) If $((v)) = 0$ then $(v) = 0, v \in V$.	
11/02/2024	# Algebra of Linear Transformations. Definition of Sum and scalar multiple of L.T. The vector space Hom (V, W) . Definition of Product (composition) of L.T. s, Linear operator, Linear functional. Theorem: Let $T, T1$, $T2, T3$ be linear operators on V and let $I: V \rightarrow V$ be the identity mapping $I(v) = v$ for all v then i) $IT = TI = T$ ii) $T(T1 + T2) = TT1 + TT2$ $TT1 + T2$ $T11 + T2$	Lecture
12/02/2024	Theorem: (without proof) Let V and W be two vector spaces (over F) of dimension m and n respectively. Then Hom (V, W) has dimension mn . # Invertible Linear Transformation. Definition of Invertible map, Inverse of a L.T. is also a L. T., Definition of nonsingular L. T. Theorem: A L.T. $T: V \to W$ is a nonsingular iff T carries each L. I. subset of V onto a L. I. subset of W	Lecture and Problem solving
13/02/2024	Theorem: Let $T: V \to W$ be a L.T. where V and W are F.D.V.S. with same dimension. Then the following statements are equivalent. (i) T is invertible. (ii) T is non-singular. (iii) T is onto. (iv) If $\{v1, v2, \ldots, vn\}$ is a basis of V then $\{T(v1), T(v2), \ldots, T(vn)\}$ is a basis of W . Theorem: Let $T: V \to W$ and $S: W \to U$ be two linear transformations. Then (i) If S and T are one – one, onto then ST is one-one, onto and $(ST) - 1 = T - 1S - 1$ (ii) If ST is one – one then T is one-one. (iii) If ST is onto then S is onto.	Lecture and Problem solving

14/02/2024	Matrix of L.T. and examples. Definition of Matrix of	Lecture and
11,02,2021	L.T. and examples. Theorem: $Hom(U, V) \cong Mm \times n$	Problem solving
15/02/2024	Unit 2: Inner Product Spaces, Eigen values and Eigen	Lecture
	vectors.	
	# Inner product space . Definition of Inner product	
	space, norm of a vector and examples	
16/02/2024	Theorem: Cauchy- Schwarz inequality. Let <i>V</i> be an	Lecture and
	inner product space. Then $ (u, v) \le u v $, for all u, v	Problem solving
	$\in V$. Theorem: Triangle inequality. Let V be an inner	
	product space. Then $ x + y \le x + y $, for all $x, y \in V$.	
17/02/2024	AND EXAMPLES	T 4 1
17/02/2024	Theorem: Cauchy- Schwarz inequality. Let <i>V</i> be an	Lecture and
	inner product space. Then $ (u, v) \le u v $, for all u, v	Problem solving
	$\in V$. Theorem: Triangle inequality. Let V be an inner	
	product space. Then $ x + y \le x + y $, for all $x, y \in V$. AND EXAMPLES	
21/02/2024	Theorem: Generalized Pythagoras Theorem Let <i>V</i> be	Lecture and
	an inner product space. Let $x, y \in V$ such that $x \perp y$.	Problem solving
	Then $ x + y ^2 = x ^2 + y ^2$. Definition of orthonormal	
	set. Theorem: Let S be a orthogonal set of non-zero	
	vectors in an inner product space V. Then S is a linearly	
	independent set.AND EXAMPLES	
22/02/2024	Corollary: An orhtonormal set in an inner product	Lecture
	space is L. I. Theorem: (Gram-Schmidt	
	orthogonalisation process) Let <i>V</i> be a non-zero inner	
	product space of dimension n . Then V has an	
	orthonormal basis	
23/02/2024	Examples on Gram-Schmidt orthogonalisation process	Lecture and
	(finding the orthonormal basis). Theorem: Bessel's	Problem solving
	inequality. If $\{w_1, w_2, \dots, w\}$ be an orthonormal set in	
	V, then $\sum (wi, v) 2 m i = 1 \le v 2$ for all $u, v \in V$. Eigen values and Eigen vectors . Definition of Eigen	
	values, Eigen vectors and simple examples.	
24/02/2024	Definition of Eigen space of <i>T</i> associated with Eigen	Lecture and
21/02/2021	value. Eigen space is a subspace. Theorem: Let <i>T</i> be a	Problem solving
	linear operator on a finite dimensional vector space V	
	over F . Then $c \in F$ is an Eigen value of T if and only if	
	T - cI is singular (not invertible). Property 1: Let dim	
	V = n. Let T be a linear operator on V. Let $v1$, $v2$,,	
	vk be Eigen vectors of T , corresponding to distinct	
	Eigen values $c1$, $c2$,, ck of T . Then $v1$, $v2$,,	
	vk are linearly independent.	
25/02/2024	Charateristic Polynomials - Definition of	Lecture
	Characteristic Polynomial of a matrix and remarks on	
	it. Definition of similar matrices. Theorem: Similar	
26/02/2024	matrices have same characteristic polynomial	Lactures
26/02/2024	Definition of Characteristic Polynomial of a Linear	Lecture
	operator. Theorem: Let $c \neq 0$ be an Eigen value of an	

	invertible operator T . Then $c-1$ is an Eigen value of $T-1$	
27/02/2024	Examples on Eigen values and Eigen vectors, real life	Lecture and
	application (Predatory – Prey problem)	Problem solving
28/02/2024	Examples	Problem solving