Shivaji University, Kolhapur Balasaheb Desai College, Patan DEPARTMENT OF STATISTICS

Project Report on

"Statistical Analysis of Birth Order of Child and Their Performance"

Submitted by:

Sr.No	Name of The Student	Class	Roll No
1	Kalake Sayali Narayan	B.ScII	1371
2	Kadam Tejaswini Uttam	B.ScII	1370
3	Mali Samiksha Ravindra	B.ScII	1375
4	More Dhiraj Balu	B.ScII	1381
5	Surle Sanket Santaji	B.ScII	1405
6	Shelar Sakshi Dattatray	Bsc II	1397

Under Guidance of Dr. S. R. Supanekar

Academic Year 2023-24

INDEX

SR.NO	CONTENTS
1	Introduction
2	Methodology
3	Objectives
4	Testing Procedure
5	Conclusion
6	Collected Data

(Dr. Supanekar S. R.)

Department of Statistics

DEPARTMENT OF STATISTICS Balasahed Desai College, Patan, Tal. Patan, Dist. Satara

(Name and Signature of Guide)

INTORDUCTION

Birth order refers to the order in which children are born into a family, typically categorized as oldest, middle, youngest, or only child. The concept of birth order has long been a topic of interest in psychology, sociology, and other social sciences due to its potential impact on various aspects of personality, behavior, and development. One aspect often explored in this context is the relationship between birth order and cleverness or intelligence.

Research on birth order and cleverness has produced mixed findings over the years. Some studies have suggested that birth order may influence intelligence, with firstborn children often believed to have higher levels of intelligence or academic achievement compared to their younger siblings. This notion is often attributed to factors such as increased parental attention and resources available to the firstborn, as well as the role of the firstborn as a mentor or teacher to younger siblings, which may enhance cognitive development. However, other studies have failed to find consistent evidence supporting a significant relationship between birth order and intelligence. Some researcher said that younger children often higher levels of intelligence or academic achievement compared to their firstborn. Hence we interested to study this topic.

It's essential to approach the topic of birth order and cleverness with caution, as individual differences among siblings can be vast and influenced by numerous factors beyond birth order alone. While birth order may play a role in shaping certain aspects of personality and behavior, its impact on intelligence is still a topic of ongoing debate and research in the field of psychology.

METHODOLOGY

In this Project, we select such families where child's has passed S.S.C exams from different villages of Patan Taluka. We collect data from 189 families with 396 children on the basis of questionnaire attached in Appendix 1

OBJECTIVE

To study the relation between,

- 1) Birth order and cleverness of child
- 2) Birth order and understanding of child

ANALYSIS OF DATA

Collected data are classified and analyzed and presented in tabulated form. The different tables are given here,

	Cleverness Level			Total
Order	Most	More	clever	
	Clever	clever		
Firstborn	85	99	3	187
Second	100	87	4	191
born				
Third born	5	4	9	18
Total	190	190	16	396

	Understanding Level			Total
Order	1	2	3	
Firstborn	107	78	3	188
Second born	78	106	6	190
Third born	3	5	9	18
Total	188	189	19	396

TESTING PROCEDURE

Notations:

Oi (i=1,2,.....n) be the set of observed (experimental)frequencies

Ei (i=1,2,...n) be the corresponding set of expected (the rotical) frequencies.

I) Test for independence of birth order and cleverness of child

Step 1: Null Hypothesis

H₀: Birth order and cleverness is independent.

Step 2: Alternative Hypothesis

H₁: Birth order and cleverness are not independent

Step 3: Let the level of significance for this test is α =0.05

Step 4: Computation

Oij	Eij	(Oij-Eij)^2/Eij
85	89.7222	0.248536
99	89.7222	0.959379
3	7.5556	2.746769
100	91.6414	0.762387
4	7.7172	1.790491
5	8.6364	1.531125
13	9.3637	1.412121
	396.0001	9.685882

Step 5: Test statistic (under H₀)

$$\chi^2 = \sum \sum \frac{(O_{ij} - E_{ij})^2}{E_{ij}} = 9.6858$$

Step 6: Critical Region and Decision Rule

$$\left\{\chi^2/\chi^2 > \chi^2_{(m-1)(n-1)}(\alpha)\right\}$$
 i.e. $\left\{\chi^2/\chi^2 > \chi^2_4(0.05)\right\}$ i.e. $\left\{\chi^2/\chi^2 > 9.488\right\}$

here, $\chi^2 = 9.6858$ is belongs to critical region

Therefore we Reject Ho.

i.e. Birth order and cleverness are not independent

II) Test for independence of birth order and understanding of child

Step 1: Null Hypothesis

H₀: Birth order and understanding is independent.

Step 2: Alternative Hypothesis

H₁: Birth order and understanding are not independent

Step 3: Let the level of significance for this test is α =0.05

Step 4: Computation

Oij	Eij	(Oij-Eij)^2/Eij
107	89.2525	3.5290
78	89.7273	1.5328
3	9.0202	4.0180
78	90.2020	1.6506
106	90.6818	2.5876
6	9.1162	1.0652
3	8.5455	3.5987
15	9.4545	3.2526
		21.2345

Step 5: Test statistic (under H0)

$$\chi^2 = \sum \sum \frac{(o_{ij} - E_{ij})^2}{E_{ij}} = 21.2345$$

Step 6: Critical Region and Decision Rule

$$\{\chi^2 / \chi^2 > \chi^2_{(m-1)(n-1)}(\alpha)\}$$
 i.e. $\{\chi^2 / \chi^2 > \chi^2_4(0.05)\}$

i.e.
$$\{\chi^2 / \chi^2 > 9.488\}$$

here, $\chi^2 = 21.2345$ is in critical region

Therefore we Reject Ho.

i.e. Birth order and understanding are not independent

V) Test for equality of proportion of Birth order in Cleverness

Step 1: Null Hypothesis: H_0 : P1 = P2

Step 2: Alternative Hypothesis: H_1 : P1 < P2

Step 3: Let the level of significance for this test is α =0.05

Step 4: Computation:

Sample Proportion of cleverness among older child. = P1= 0.4594

Sample Proportion of cleverness among younger child. = P2=0.5405

Step 5: Test statistic (under H₀)

$$U = P1- P2/\sqrt{(1/n1+1/n2)*p^Q^-N(0,1)}$$

Therefore,

$$U = -3.1316$$

Step 6: Critical Region and Decision Rule

$$\{U / U < -u\alpha\}, Here, -u\alpha = -u(0.05) = -1.64$$

 $\{U/U < -1.64 \text{ Therefore, } U \text{ belongs to critical region.} \}$

Hence we reject H0.

Therefore we conclude that, "Younger child is more clever than older one."

VI) Test for equality of proportion of Birth order in understanding

Step 1: Null Hypothesis: $H_0: P_1 = P_2$

Step 2: Alternative Hypothesis: H_1 : $P_1 > P_2$

Step 3: Let the level of significance for this test is α =0.05

Step 4: Computation

Sample Proportion of understanding among older child. = P_1 = 0.5783

Sample Proportion of understanding among younger child. = P₂=0.4216

Step 5: Test statistic (under H₀)

$$U = P1- P2/\sqrt{(1/n1+1/n2)*p^Q^-N(0,1)}$$

Therefore,
$$U=6.05019$$

Step 6: Critical Region and Decision Rule

$$\{U/U > u\alpha\}, \text{ Here, } u\alpha = u(0.05) = 1.64$$

 $\{U/U>1.64\}$ Therefore, U belongs to critical region.

Hence we accept H0.

Therefore we conclude that, "Understanding level of older child is more than

Younger"

Conclusions:

Hence we conclude that,

- 1) Cleverness is dependent on birth order.
- 2) Understanding is dependent on birth order.
- 3) Younger child is more clever than older child.
- 4) Understanding level of older child is more than younger child.

(Dr. Supanekar S. R.)

Department of Statistics

DEPARTMENT OF STATISTICS Balasahed Desai College, Patan, Tal. Patan, Dist. Satara