
Question Bank

Paper XIV- DSE-F2 Solid State Physics

Class: **B.Sc. III**

		Unit I- Chapter I-	Crystal Structure	
• M	ultiple Choice Quest	ions (Correct answer	is shown in red colo	r)
1	The number of po	int group and space latt	tice structure in three	dimensions are
	a) 7,14	b) 32,14	c) 4,7	d) 14,32
2	The Miller index	for the plane which doe	s not cut the crystallo	graphic axes
	a) 0	b) 1	c) 1	d) ∞
3	The close packed	structure are		
	a) SC and FCC		b) BCC and FC	CC
	c) HCP and FCC		d) BCC and H	СР
4	The interplanar d	istance for plane (221)	in case of cubic cryst	al lattice is
	a) $\frac{a}{5}$	b) $\frac{a}{9}$	c) $\frac{a}{3}$	d) $\frac{a}{6}$
5	Primitive unit cel	l contains number o	fatoms	
	a) 1	b) 2	c) 3	d) 4
6		ion for FCC crystal stru	icture	
	a) $\frac{\pi}{6}$	b) $\frac{3\pi}{8}$	$\frac{\pi}{3}$	$\stackrel{d)}{\overset{\pi}{=}} 2$
7	The atomic radius	s of HCP lattice is		
	a) a 2 2	b) a 2 2	$\frac{3}{4}$	$\frac{a}{2}$
8	The coordination	number for SC lattice		
	a) 8	b) 6	c) 12	d) 10
9	The packing fract	ion for SC crystal struc	ture	

	a) 0.52	b) 0.68	c) 0.74	d) 0.34
10	The atomic radius of l	BCC lattice is		
	a) $\frac{a}{2}$	a	$\frac{\sqrt{3}}{4}$	a
	$\frac{a}{2}$	$\frac{a}{2\sqrt{2}}$	4	d) $\frac{a}{\sqrt{2}}$
11	The coordination number	ber for FCC lattice		
	a) 6	b) 8	c) 12	d) 10
12	The packing fraction f	or BCC crystal stru	cture	
	a) 0.52	b) 0.68	c) 0.74	d) 0.34
13	The atomic radius of s	imple cubic lattice	is	
	a) $\frac{a}{2}$	$\frac{a}{2\sqrt{2}}$	$\frac{\sqrt{3}}{4}$	d) $\frac{a}{\sqrt{2}}$
	2	$\overline{2\sqrt{2}}$	4	$\frac{d}{\sqrt{2}}$
14	The coordination number	ber for HCP lattice		
	a) 6	b) 8	c) 12	d) 10
15	The packing fraction f	or HCP crystal stru	cture	
	a) 0.52	b) 0.68	c) 0.34	d) 0.74
16	The atomic radius of F	CCC lattice is		
	a) $\frac{a}{2}$	$\frac{a}{2\sqrt{2}}$	$\frac{\sqrt{3}}{4}$	a
	a) 2	$\overline{2\sqrt{2}}$	4	d) $\frac{a}{\sqrt{2}}$
17	The coordination num	ber for BCC lattice		
	a) 6	b) 8	c) 12	d) 10
18	The number of lattice	points per unit cell	for non primitive co	ell is
	a) equal to one		b) greater than o	ne
	c) less than one		d) equal to zero	
19	The Miller index for the		crystallographic axe	
	a) 0	b) 1	c) 1	d) ∞
20	The sequence of atom	s in hexagonal clos	e packed crystal str	ucture is
	a) ABCABC	b) ABAB	c) random	d) ABCDABCD
21	The Millon index for the	aa mlama wabiah auta	the V exists \overline{a}	:a
	The Miller index for the	ie piane which cuts	$\frac{1}{3}$	15
	a) 3	b) 1	c) <u>3</u>	d) 1
			-, -	,

	a) Crystal	b) Lattice	c) Unit cell	d) Miller indices
35	Every point of space la	attice hass	urroundings.	
	a) Atoms	b) element	c) Lattice	d) Identical
36	is a system of no	otation of planes wit	thin a crystal of sp	ace lattice
	a) Space lattice	b) Crystalline	c) Miller	d) identical
			indices	
37	Atomic packing fraction	on is maximum for.		
	a) plastic	b) SC	c) BCC	d) FCC
38	360 ⁰			
	-	l axis of symmetry t	then for triad axis	the cube must be rotated
	n			
	through the angle of	••		
	a) 60^{O}	b) 90^{O}	c) 120°	c) 180^{O}
39	The interracial angles	of a Hexagonal crys	stal system are giv	en by
	a) $\alpha = \beta = \gamma = 90o$		b) $\alpha = \beta = 90^{\circ}$,	$\gamma = 120^{\rm o}$
	c) $\alpha = \beta = \gamma \neq 90^{\circ}$		d) $\alpha \neq \beta \neq \gamma \neq 9$	00°
40	360 ⁰			
	=	d axis of symmetry	then for tetrad axis	s the cube must be rotated
	n through the angle of			
	a) 60^{O}	b) 90°	c) 120 ⁰	c) 180^{0}
41	Co-ordination no. & A	atomic packing frac	tion of HCP struct	ure is same as that of
	the			
	a) SC	b) FCC	c) BCC	d) Rubber
42	The angle between [1]	11] and [11–2] direc	ctions in a cubic cr	rystal is (in degrees)
	a) 0	b) 45	c) 90	d) 120
43	Atomic packing factor	is		
	a) Distance between tw	wo adjacent atoms		
	b) Projected area fract	ion of atoms on a pl	lane	
	c) Volume fraction of	atoms in cell		
	d) Distance between tw	wo adjacent planes		
44	Which unit cell has eig	ght atoms located in	the corners, has s	ides that are all the same
	length, and has angles	of only 90°?		

	a) SC	b) FCC	c) BCC	d) triclinic			
45	Intercepts of a pla	ne in crystal is given b	by a, b/2, 3c in a s	imple cubic unit cell, Miller			
	indices are,						
	a) (1 3 2)	b) (2 6 1)	c) (1 2 3)	d) (3 6 1)			
46	The sequence of	atoms in FCC crystal s	structure is				
	a) ABCABC		b) ABAB				
	c) random		d) ABCDAI	BCD			
47	A Cube hasele	ements of symmetry					
	a) 13	b) 01	c) 09	d) 23			
48	A Cube hasro	tation axes of symmetr	ry				
	a) 13	b) 01	c) 09	d) 23			
49	A Cube haspla	anes of symmetry					
	a) 13	b) 01	c) 09	d) 23			
50	$\frac{c}{a}$ ratio in HCP	$\frac{c}{a}$ ratio in HCP crystal structure is					
	a) $\sqrt{\frac{8}{3}}$	b) $\sqrt{\frac{3}{8}}$	c) $\sqrt{\frac{4}{3}}$	d) $\sqrt{\frac{3}{2}}$			
• S h	nort Answer Questio	ons					
1.	Explain the concept	of reciprocal lattice.					
2.	Give construction of	two dimensional reci	procal lattice.				
3.	State and explain the properties of reciprocal lattice.						
4.	Show that the volume of unit cell of reciprocal lattice is inversely proportional to the						
	volume of the unit cell in the direct lattice.						
5.	Show that reciprocal	l lattice to bcc lattice is	s fcc lattice.				
6.	Find the reciprocal l	attice to fcc lattice.					
7.	Derive Bragg's law	for X-ray diffraction					
8.	What is Ewald's con	struction? Derive Brag	gg's law in recipro	ocal			
	lattice.						

Obtain the vector form of Bragg's law using the concept of reciprocal lattice.

Explain analysis of cubic crystal by powder method.

What are Brillouin zones? Discuss the construction of first two Brillouin zones for a

9.

10.

11.

square lattice.

- 12. Explain diffraction of X-rays by crystal.
- Long Answer Questions
- 1. Describe Laue's method of X-ray diffraction.
- 2. Describe Rotating Crystal method of X-ray diffraction.
- 3. Describe powder method of X-ray diffraction.
- 4. What is reciprocal lattice? Derive relations for primitive translation vectors of the reciprocal lattice in terms of those of the direct lattice.

Unit II- Chapter I- Magnetic Properties of Matter

- Multiple Choice Questions (Correct answer is shown in red color)
 - 1. Magnetic susceptibility γ is.....
- A) dipole moment per unit volume
- B) torque per unit area
- C) magnetization for unit magnetic field intensity
- D) none of these
- 2. One Bohr magneton is....

A)
$$9.27 \times 10^{-24} amp.m^2$$

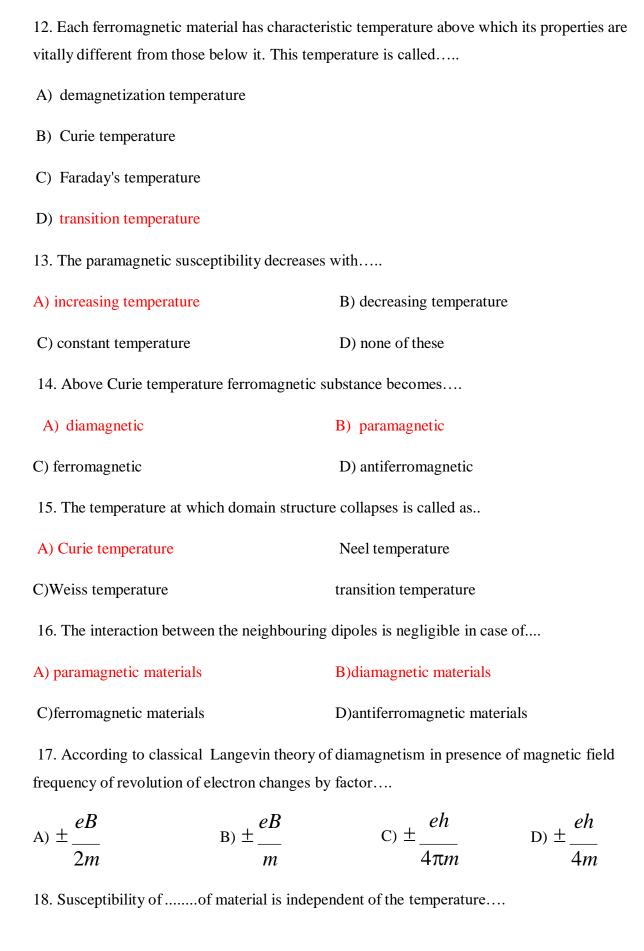
B)
$$2.27 \times 10^{-24} amp.m^2$$

C)
$$6.67 \times 10^{-24} amp.m^2$$

D)
$$9.27 \times 10^{-9} amp.m^2$$

3. Magnetic susceptibility χ of a material is given by.....

A)
$$\chi = \begin{pmatrix} \mu & -1 \end{pmatrix}$$
 B) $\chi = \frac{M}{H}$ C) $\chi = \begin{pmatrix} \mu - \mu \\ \hline \mu \\ o \end{pmatrix}$ D) All


- 4. The magnetic materials in which permanent magnetic dipoles are already aligned due to bonding forces are known as.....
- A) paramagnetic materials

B) ferromagnetic materials

C) diamagnetic materials

D) antiferromagnetic materials

5. In ferromagnetic material, susceptibility is						
A)very large and negative						
B)very small and negative	;					
C) very large and positive						
D)very small and positive						
6. Which of the following	material does not h	ave permanent magnetic d	ipole			
A) paramagnetic		B) diamagnetic				
C) ferrimagnetic		D) antiferromagnetic				
7. Diamagnetic material po	ossesses					
A) induced dipole momen	ut					
B) permanent magnetic di	poles					
C) no permanent magnetic	dipoles					
D) none of these						
8. The susceptibility of dia	magnetic material	is about				
A) 10^{-6}	в) 10 ⁷	c) 10^5	$_{\rm D)}10^{-5}$			
9. The Ferromagnetic Curie temperature of iron						
A) 922 K B) 631 K C) 1043K D) 1428 K						
10.Curie -Weiss law is						
A) $\chi = \frac{C}{T}$	B) $\chi = \frac{C}{\theta}$	C) $\chi = \frac{C}{\theta - T}$	$\mathbf{D}) \ \chi = \frac{C}{T - \theta}$			
11. At Curie temperature, the spontaneous magnetization for ferromagnetic material is						
A) ∞	B) 0	C) 1	D) -1			

A) diamagnetic

B) paramagnetic

C) ferromagnetic

D) ferrimagnetic

19. Curie law for paramagnetic material is..

A)
$$\chi = \frac{C}{\theta}$$

$$\mathbf{B)} \ \chi = \frac{C}{T}$$

B)
$$\chi = \frac{C}{T}$$
 C) $\chi = \frac{C}{\theta - T}$ D) $\chi = \frac{C}{T - \theta}$

$$D) \chi = \frac{C}{T - \theta}$$

20. Saturation magnetization in paramagnetic materials is observed at....

- A) high temperature and high magnetic field
- B) at high temperature and low magnetic field
- C) low temperature and low magnetic field

D)low temperature and high magnetic field

21. The effective number of bar magnet on each Peff is.....

A)
$$g\sqrt{(J+1)}$$

A)
$$g\sqrt{(J+1)}$$
 B) $g\sqrt{J(J-1)}$ C) $g\sqrt{J(J+1)}$

$$c) g\sqrt{J(J+1)}$$

D)
$$gJ$$

22. Quantum theory of paramagnetism approaches to the classical Langevin theory of paramagnetism when.....

A)
$$J \to 0$$

B)
$$J \rightarrow \infty$$

C)
$$J = -\frac{1}{2}$$
 D) $J = \frac{1}{2}$

D)
$$J = \frac{1}{2}$$

23. The Curie law of paramagnetism holds good for.

A)
$$\mu B >> kT$$
 B) $\mu B = kT$

B)
$$\mu B = kT$$

C)
$$\mu B = \frac{1}{kT}$$

D)
$$\mu B \ll kT$$

24. Saturation magnetization in paramagnetism is Ms =

C)
$$N\mu L(x)$$

d)
$$N^2\mu$$

25 Materials have large and positive value of susceptibility						
B)	diamagnetic		B) paramagnetic			
C) fo	erromagnetic		D) antiferromagnetic			
26.	The lagging intensity of ma	gnetisation bel	aind the magnetising field	ld is called as		
A)]	hysteresis		B)Spontaneous magnet	ization		
C) s	aturation magnetization		D) wall displacement			
27.	The value of magnetisation	which remains	even after magnetising	field is reduced to zero		
A)	hysteresis		B) retentivity			
C) c	oercivity		D) saturation magnetiza	ation		
28.	Energy loss during hystersis	is the area of				
A) γ	$\chi - T$ B)	B-H	C) $M-B$	D) $\chi - H$		
29.7	The magnetic field B_E is properties	oortional				
	A) Magnetization of domain	1	B) Applied magnet	tic field		
(C) magnetic induction		D) area off domain	1		
30.	The susceptibility of diamag	netic materials	is to the atomic	number.		
A) i	nversely proportional		B) directly proportional	1		
C) 6	equal		D) independent			
• Sh	ort Answer Questions					
1.						
2.	Explain how and why are the ferromagnetic domains formed?					
3.	Draw a typical B-H curve and describe the different magnetization processes.					
4.	Explain the hysteresis in fe	rromagnetic m	aterial. What is retaintiv	vity and coercivity?		
5.	Show that energy loss in hysteresis is the area of B-H curve.					
6.	Why diamagnetic materials have negative susceptibility?					

- 7. Explain the following terms briefly. (a) hysteresis, (b) coercivity, (c) remanence
- 8. Distinguish between diamagnetic, paramagnetic and ferromagnetic materials.
- 9. 8. Derive Curie Weiss law.

• Long Answer Questions

- Explain classical Langevin's theory of diamagnetism and obtain an expression for diamagnetic susceptibility.
- 2. Explain classical Langevin's theory of paramagnetism. Obtain an expression for paramagnetic susceptibility.
- 3 Obtain an expression for diamagnetic susceptibility using the Langevin's theory. 6. Given an account of quantum theory of paramagnetism and discuss low and high temperature cases.
- 4 Give an account of Weiss theory of ferromagnetism. Discuss the temperature variation of saturation magnetization.
- 5 Explain the cause of hysteresis phenomenon in the ferromagnetic material. What does area of B-H loop signify?

area of B-H loop signify?						
Unit II- Chapter II- Band Theory of Solids						
 Multiple Choice Quest 	tions (Correct answe	r is s	ho	own in red color)		
1. The density of electron	n states is proportiona	l to	•••			
A) E	$^{1}/_{E}$	C)		$E^{1/2}$	D) $E^{-1/2}$	
2. In Kronig-Penny model period of one dimensional periodic potential is						
A) a	B) a+b	C)	i	a-b	D) b	
3. According to Kronig-P	enny model width of	allow	e	d energy band with incre	ase inenergy.	
A) increases			B)decreases			
C)remains constant			D)either increase or decrease			
4. In Kronig-Penny model if $P \rightarrow 0$, then it leads to						
A) tight binding model B) intermediate model						
C) free electron model D) can't say anything						

A) $-\frac{\pi}{a}to + \frac{\pi}{a}$	B) 0 to $+\frac{\pi}{a}$	C) $-\frac{\pi}{a}$ to 0	$D) - \frac{\pi}{2a} to + \frac{\pi}{2a}$				
6. The velocity of an electron in one dimensional periodic potential is v.							
$A)\frac{dE}{dK}$	$\mathbf{B}) \frac{1}{dK} \frac{dE}{dK}$	C) $-\frac{1}{dK^2}$	$\mathrm{D})\frac{d^2E}{d\kappa^2}$				
7. The effective mass of an electron is $m^*=$							
A) $\frac{d^2E}{dk^2}$	$\mathrm{B})^{\frac{d^2E}{dK^2}}$	C) $-\frac{1}{dK}\frac{dE}{dK}$	D) $\frac{\frac{2}{d^2E}}{dK^2}$				
8. In lower half of energy bar	nd of E-k curve the	e effective mass of an electr	on is				
A) zero	B) infinite	C) negative	D) positive				
9. Band gap energy of silicon	ı iseV						
A) 1.12	B) 0.72	C) 7	D) 0.5				
10. Band gap energy of germ	nanium is eV						
A) 1.12	B) 0.72	C) 7	D) 0.5				
11.In semiconductors forbide	den energy gap Eg	is of the order of ev					
A) 0	B) 1	C) 7	D) ∞				
12. The conduction band of i	nsulators is						
A) completely empty B) completely filled							
C) constant temperature D) none of these							
13. The conductivity of the semiconductor with increase in temperature.							
A) decreases B) increases							
C) remains constant D) either increase or decrease							
14. In Hall effect if the current is flowing due to motion of holes, then Hall coefficient is							

5. The first Brillouin zone lies between the values of k =

A) positive

B) negative

C) either positive or negative

D) zero

15. The Hall coefficient of the n-type semiconductor material is given as R_H

A)
$$-\left[\frac{3\pi}{8}\cdot\frac{1}{\rho}\right]$$

B)
$$+ \left[\frac{3\pi}{8} \cdot \frac{1}{\rho}\right]$$
 C) $-\frac{1}{\rho}$

C)
$$-\frac{1}{\rho}$$

D)
$$+\frac{1}{\rho}$$

16. In Hall effect, if the current flowing through the material is in x-direction, applied magnetic field is in z-direction then Hall voltage will be produced in.....

A)x-direction

B) y-direction

C) z-direction

- D) x and y direction
- 17. The effective number of free electrons that is $N_{eff} = 0$ for.....
- A)metals

B) metals and semiconductors

C) semiconductors

D) insulators

• Short Answer Questions

- 1. Explain the concept of density of state.
- 2. State Bloch function.
- 3. Write a note on Effective mass of an electron.
- 4. Define valence band, conduction band and forbidden energy gap.

• Long Answer Questions

- 1. Discuss the formation of allowed and forbidden energy bands on the basis of Kronig-Penny model.
- 2. Obtain an expression for velocity of an electron as predicted by band theory. Hence explain variation of velocity of electrons with wave vector.
- Show that effective mass of an electron is inversely proportional to $\frac{d^2}{dK^2}$. Explain its 3. significance.
- 4. Obtain an expression for effective number of free electrons in an energy band
- 5. Define Hall Effect. Obtain an expression for Hall voltage and Hall coefficient.
- 6. Explain variation of effective mass of an electron with a wave vector.
- 7. Explain how energy gap is formed between allowed energy bands.
- 8. Distinguish between metal, semiconductor and insulator on the basis of their energy band structure.