Department of Physics

Question Bank

Paper XIII- DSE-F1 Nuclear and Particle Physics

Class: **B.Sc. III**

Unit I- Chapter I- General Properties of Nuclei and Nuclear Model

• Multiple Choice Que	estions (Co	rrect answer is shown in red color)			
1. The nucleus contains					
A) protons and electron	S				
B) protons and neutron	S				
C) neutrons and electro	ons				
D) neutrons and a-parti	icles				
2. Isobars are the nuclid	les with sam	ne but different			
A) A-values, Z-values		B) A-values, N-values			
C) Z-values, A-values		D) N-values, Z-values	D) N-values, Z-values		
3. Protons and neutrons	s have intrin	nsic spin equal to			
A)	B) 2	C) $\frac{1}{2}$	D) ${2\pi}$		
4. Nuclear binding ene	rgy is				
A) Mass defect x c ²					
B) Mass difference x c	2				
C) Mass defect / c ²					
D) Mass difference/ c ² 5. Binding energy per n	ucleon is al	most constant for			

A) very light nuclides		B) all nuclides			
) very heavy nuclides D) moderate mass nuclides					
6 model is used to	obtain semi-empir	rical mass formula.			
A) liquid drop model					
B) shell model					
C) a-particle model					
D) single particle model					
7. Magnetic moment (μ _n ,) o	of neutron is				
A)zero	B) 2.793 μ _n	C) -1.913 μ _β	D) -1.913 μ _n		
8. Nuclear radius is proport	ional to				
A) A	B) $A^{1/3}$	C) $A^{2/3}$	D) Z		
10. Most stable nuclide is					
A) ¹⁶ 0	B) $\frac{41}{20}Ca$	C) ²⁰⁶ ₈₂ Pb	D) 3 <i>H</i>		
9. One atomic mass unit (an	mu) is equal to				
A) 931 g	B) 931 kg	C) 931Mev	D) 931eV		
Short Answer Questions					
1. What are nucleons? Expl	ain their intrinsic	properties.			
2. What is the shape and size3. Discuss different method		nuclear radius.			

4. What is binding energ	gy of a nucleus? Expl	ain.	
5. Write a note on 'magic	e numbers'		
6. Discuss applications	of semi-empirical ma	ss formula.	
• Long Answer Qu	uestions		
1. What is binding energ	gy curve? Discuss its	nature and applications.	
2.Explain liquid drop m	odel for a nucleus.		
3.Derive semi-empirical	l mass formula.		
	Unit I- Chapter-II	- Particle Accelerators	
 Multiple Choice Que 	estions (Correct answ	wer is shown in red color)	
1. In particle accelerator	sparticles	are accelerated.	
A) positively charged			
B) negatively charged			
C) charged (+vely or -v	vely)		
D) neutral			
	-	ency of revolution of particles	is
frequency of accelerating	ig potentiai.		
A) equal to the		B)greater than	
C)smaller than		D)not related to the	
3. Cyclotron is suitable	to accelerate		
A) neutrons	B) protons	C) electrons	D) positrons

4. Betatron is special	ly designed to acce	lerate					
A) electrons		B) positrons	B) positrons				
C) both electrons and	d positrons	D) protons					
5. The period of revo	olution of particle is	n cyclotron is.					
A) independent of velocity of proton							
B) independent of ra	dius of orbit						
C) independent of bo	th velocity of partic	cle and radius of orbit					
D) proportional to the	ne energy of the pro	oton					
6. The first orbital res	sonance accelerator	built was					
A) cyclotron		B synchrocyclotron	B synchrocyclotron				
C)) betatron		D proton synchrotro	on				
7. The phase stable or dees isan	•	nchrocyclotron is that the	instantaneous P. D. across				
A) zero, about to bec	come accelerating						
B) zero, about to bec	ome decelerating						
C) positive, very large	e						
D) negative, very lar	ge						
8 accelerator	provides maximur	m energy particles.					
A) cyclotron	B) betatron	C) synchrocyclotron	D) proton synchrotron				
9. The magnetic pole-	-pieces are just abo	ove and below the donut tu	be in				
A) cyclotron	B) betatron	C) synchrocyclotron	D) electron-synchrotron				
10. Acceleration of	is not feas	ible in cyclotron					

A) protons		B)electrons	C)deuterons	D) α-articles		
11. A frequency modulated supply is employed in						
A) c	yclotron	B) synchrocyclotron	C)betatron	D) electon-synchrotron		
• Sh	ort Answer Qu	estions				
1.	What is the need	d of particle accelerates?				
2.	Explain the prin	ciple of betatron.				
3.	Obtain an expres	ssion for the maximum ene	ergy obtainable us	ing betatron.		
4.	What are synchr	rotrons?				
5.	Explain the prin	ciple of electron-synchrotr	on with special re	ference to two-step		
	acceleration					
• Lo	ong Answer Que	stions				
1.	Explain theory,	construction and working of	of a cyclotron.			
2.	Obtain an expres	ssion for maximum energy	obtainable from a	a cyclotron. Discuss the		
	limitations of a	cyclotron.				
3	Explain the phas	se-stable-orbit condition in	details. 6. Discus	s the construction, working		
	and advantages	of synchrocyclotron.				
4	Discuss the cons	struction, working of betatr	on.			
5	Give construction	on and working of electron-	-synchrotron.			
6.	Discuss the prin	ciple of proton-synchrotron	n with a special re	ference to two step		
	acceleration.					
7.	Explain construc	ction and working of proto	n-syncrotron.			
		Unit II- Chapter I-	Nuclear Detector	rs		
• M	ultiple Choice Q	uestions (Correct answer	is shown in red	color)		
1. T	1. The following detector use the principle of ionization of gas by the energetic particle.					

- A) ionization chamber B)GM-counter C) cloud chamber D)all the above
- 2. The following detector do not use the principle of ionization of gas by energetic ionizing particle
- A) semiconductor detector B) ionization chamber

C) GM-counter	D) cloud chamber					
3. Heart of Scintillation co	unter is					
A) MgO-coating		B) photomultiplier tub	e			
C) phosphor	D) light guide					
4. Cerenkov radiations are phase velocity of light in the		moving with a velocity	medium. the			
A) half		B) less than				
C) greater than		D) equal to				
5. The total number of ion	-pairs produced by an	ionizing particle depen	ds upon its			
A) mass	B) charge	C) initial energy	D) final energy			
6. Quenching gas in GM-t	ube is					
A)air B)	Argon C) Bromine Vapour	D) Water Vapour			
6. Gas amplification in ion	ization chamber is					
A) initial energy	B) final energy	C) 10 ⁻³	D) 10 ⁻⁸			
7. Faithful counter is one v	which producesfor	every particle passing t	hrough the counter.			
A) one pulse	B)one	and only one pulse				
C)pulses one after another	D) cor	ntinuous discharge				
8. The electron multiplicat	ion is achieved in					
A)GM-Counter	B)photomultiplier tube					
C)Scintillation detector	D) Cerenkov detector					
7. Gas amplification in GM	1-Counter is					
A) initial energy	B) final energy	C) 40^3	D) $\sim 10^8$			
7 The sensitive period of a	cloud chamber is that	when				

- A) air in the chamber, (is clean i.e.) has no dust particles
- B) air in the chamber has no ions
- C) air in the chamber contains saturated vapour
- D) air in the chamber contains super saturated vapour

• Short Answer Questions

- 1. Explain the principle of ionization chamber.
- 2. What do you mean by quenching of GM-tube? Explain the self quenching mechanism.
- 3. How working potential for GM-tube is decided? 7. What is dead time of GM-counter? How a correction can be applied to it?
- 4. What is Scintillation detector?

• Long Answer Questions

- 1. Discuss construction and working of ionization chamber.
- 2. With the help of block diagram, explain the GM-counter.
- 3. Explain the construction and working of a Scintillation counter. What are advantages of it over GM-counter.
- 4. What do you mean by Cerenkov radiations? How this principle can be used to detect or count fast moving charged particle?
- 5. Explain the theory, construction and working of semiconductor detector. Compare the maximum count rate of semiconductor detector with other counters.
- 6. Explain variation of effective mass of an electron with a wave vector.
- 7. Explain how energy gap is formed between allowed energy bands.
- 8. Distinguish between metal, semiconductor and insulator on the basis of their energy band structure.

Unit II- Chapter II- Particle Physics

•	Multiple	Choice (Questions	(Correct	answer is	shown	in red	color)
---	----------	----------	-----------	----------	-----------	-------	--------	-------	---

1 force is	not an interaction.			
A) gravitational	B) electromagnetic	C)	strong nuclear	D) centrifugal
2 force is	s an interaction			

A) centrifugal	B) frictional	C) electromagnetic	D) viscous			
3interactions are very strong, but have very short range.						
A) strong	B) electromagnetic	C) weak	D) gravitational			
4interactions are very weak, but have very large range.						
A) strong	B) electromagnetic	C) weak	D) gravitational			
5. Rest mass of bos	sons is non-zero.					
A) gluon	B) photon	C) weak (W)	D) graviton			
6are elementary pa	rticles which are not con	nstituted of quarks.				
A) Leptons B) Me	esons C) Bary	ons D) I	Nucleons			
7 elementary pa	rticle are composites of	three up (u) and dov	vn (d) quarks.			
A) Leptons	B) Mesons	C) Baryons	D) Nucleons			
8 elementary pa	rticle are composites of	a quark (u or d) and a	n antiquark (ī& đ)			
A) Leptons	B) Mesons	C) Pions	D) Hyperons			
9are composites of	up (u), down (d) and str	range (s) quarks.				
A) Leptons	B) Nucleons	C) Mesons	D) Hyperons			
10elementary partic	eles have spin half and p	ositive parity.				
A) Baryons	B) Pions	C) Kaons	D) Photons			
11. Elementary particles with zero spin and negative parity are						
A) Baryons	B) Pions	C) Kaons	D) both (b) and (c)			
12. An abstract spin calle	ed isospin (T) is postular	ted to explain.				
A)singlets	B) bosons	C) multiplets	D) fermions			

13. Parity is not conserved ininteractions.							
a) gravitational B)electron		agnetic	C)weak	D)strong			
14. Quarks have elec	ctronic charg	es.					
A)zero		B)One unit o	f positive				
C) One unit of negative		D)fractional					
15have not been	observed phy	ysically					
A)Leptons	B) Quarks		C)Bosons	D)Hadrons			

• Short Answer Questions

- 1. What are interactions and how they are mediated in different type of interactions.
- 2. Explain gravitational and electromagnetic interactions.
- 3. Discuss the weak and strong interactions.
- 4. What are hadrons? Discuss their properties.
- 5. Write a short note on symmetries in elementary particles. 8. Discuss 'the basic conservation laws'.
- 6. Explain the invariance of space inversion and also discuss in which interactions it is violated.

• Long Answer Questions

- 1. Give the classification of the fundamental particles.
- 2. Write a note on quark-model.