Koyana Education Society's

Balasaheb Desai College, Patan

Class: B. Sc. III Semester-IV

Subject: Physics Paper-XI Classical Mechanics Question bank

Unit I – 1. Lagrangian Formulation

Multiple choice question

1) A constraint is aon the freedom of motion of a system of particles.				
a) restriction		c) further information		
b) condition		d) binding		
2) The principal of virtua	al work deals only the case	s of		
a) static		c) kinematics		
b) dynamics		d) kinetics		
3) A rigid body moving t	freely in space has	degrees of freedom.		
a) 1	b) 6	c) 9	d) 3	
4) D' Alembertz principl	e is			
a) $\sum_i (F_i^a - p_i) \delta r_i = 0$		c) $\sum_{i} (F_i^a + p_i) \delta r_i = 0$		
b) $\sum_i (F_i^a - \dot{p}_i) \delta r_i = 0$		$d) \sum_{i} (F_i^a + \dot{p}_i) \delta r_i = 0$		
5) When constraints are introduced into a system, the number of degrees of freedom is				
a) increased		c) changes		
b) reduced		d) remains same		
6) The Lagrangian function L is given as				
a) $L=T+V$		c) L= V-T		
b) L = T-V		d) L=V/T		
7) The constraints involved in the motion of a particle placed on the surface of sphere is				
a) holonomic		c) rheonomous		
b) non-holonomic		d) both a and c		

c) $\sum_{i} \vec{f_i} \cdot \delta \vec{r_i} = 0$	$\mathrm{d})\Sigma_i\overline{F_i}\ = 0$			
16) The Atwood machine may be regarded as an example of a conservative system with				
a) holonomic, rheonomous constraint	c) nonholonomic, rheonomous constraint			
b) holonomic, scleronomous constraint	d) nonholonomic, scleronomous constraint			
17) For a particle moving in free space itsenergy is zero				
a) Kinetic	c) total			
b) potential	d) rest mass			
18)constraints are independent of time				
a) holonomic	c) scheronomous			
b) nonholonomic	d) rheoenomous			
19)The generalized coordinates for motion of a particle moving on the surface of a sphere of				
radius r are				
a) r and θ	c) θ and ϕ			
b) r and ϕ	d) zero and $\boldsymbol{\phi}$			
20)The Lagrangian equations of motion for a system motion.	m are equivalent to equations of			
a) Newton's	c) Poisson			
b) Laplace	d) Maxwell's			

Short answer question

- 1) What are constraints? Explain holonomic and non-holonomic constraints.
- 2) Explain scleronomous and rheonomous constraints.
- 3) Explain the term degrees of freedom.
- 4) Explain the term 'generalised coordinates'. Why they are needed?
- 5) Write a note on 'Principle of virtual work'
- 6) Obtain D'Alembert's principle in generalized coordinates.
- 7) Write a note on 'Atwood's Machine'.
- 8) Derive an equation of motion for a bead sliding on a uniformly rotating wire.

Long answer question

1) Obtain Lagrange's equations from D'Alembert's principle.

- 2) Using Lagrangian formulation, obtain an equation of motion for a particle moving in a free space.
- 3) Using Lagrange's equation, obtain an experssion for acceleration in the Atwood's machine.
- 4) Derive an equation of motion for a bead sliding on a uniformly rotating wire.

Unit $I-2$. Techniques of calculus of variation					
Multiple choice question					
1) The shortest distance between two points in a pla	ane is along apassing through the two				
points.					
a) curve	c) normal to the plane				
b) straight line	d) parallel to the plane				
2) Hamilton's principal isprinciple					
a) an integral	c) an algebraic				
b) a differential	d) a linear				
3) Analytically Hamilton's principle can be represented as					
a) $\int_{t_1}^{t_2} L \ dt \neq extremum$	c) $\int_{t_1}^{t_2} L dt = 0$				
b) $\int_{t_1}^{t_2} L \ dt = extremum$	$d) \int_{t_1}^{t_2} L dt = \infty$				
4) The Hamiltonian H is given as					
a) $H = L + V$	c) $H = T + V$				
b) H = L-V	d) H =T-V				
5) The system is called as monogenic, if all the forces of a system are generated from					
function					
a) single	c) triple				
b) double	d) fourth				
6) If all forces of a system are generated from a single function, the system is called system					
a) conservative	c) non conservative				
b) monogenic	d) polygenic				

7) Hamilton's principle is given as.

a)
$$I = \int_{t_1}^{t_2} L \, dt$$

c)
$$I = \int_{t_1}^{t_2} L^2 dt$$

b)
$$I = \int_{t_1}^{t_2} \frac{1}{L} dt$$

d)
$$I = \int_{t_1}^{t_2} L^3 dt$$

8) The Euler-Lagrange's equations are given by.....

a)
$$\frac{\partial L}{\partial q_i} + \frac{d}{dt} \left(\frac{\partial L}{\dot{q}_i} \right) = 0$$

c)
$$\frac{\partial L}{\partial q_i} - \left(\frac{\partial L}{\dot{q}_i}\right) = 0$$

b)
$$\frac{\partial L}{\partial a_i} - \frac{d}{dt} \left(\frac{\partial L}{\partial t} \right) = 0$$

d)
$$\frac{\partial L}{\partial q_i} + \left(\frac{\partial L}{\dot{q}_i}\right) = 0$$

9) In Brachistochrome problem, the equations of motion of the a particle is.....

a)
$$x = a(1 - \cos\theta), y = a(\theta - \sin\theta)$$
 c) $x = (1 - \cos\theta), y = (\theta - \sin\theta)$

c)
$$x = (1 - \cos\theta), y = (\theta - \sin\theta)$$

b)
$$x = a(\theta - \cos\theta), y = a(1 - \sin\theta)$$

d)
$$x = a(1 + \cos\theta), y = a(\theta + \sin\theta)$$

10) In Brachistochrome problem, the path of the particle is.....

a) parabola

c) straight line

b) circle

d) cycloid

11) In variational principle, the line integral of some function between two end points is.....

a) zero

c) stationery

b)infinite

d)one

12) The n-dimensional space is called..... space.

a) phase

c) real

b) configuration

d) solar

Short answer question

- 1) State and explain Hamilton's principle.
- 2) Show that shortest distance between two points in a plane is along a straight line.
- 3) Write a note on 'Brachistochrone problem'.
- 4) Show that the path of a particle moving under constant conservative force field in least time is cycloid.

Long answer question

- 1) Deduce Hamilton's principle from D'Alembert's principle.
- 2) Derive Lagrange's equations of motion from Hamilton's principle.

Unit II – 1. Rigid body motion

Multiple choice question

1)	A body is said to be rigid if the distance between any two of its constituent particle is .				
	a) Constant	b) Large	c) changes		
2)	A rigid body in motion car	n be completely spec	ified if its are known.		
a)	Position and centre of mas	SS	c) Position and orientation		
b)	Position and centre of grav	vity			
3)	3) In case of a rigid body, having N particles, the number of degrees of freedom is				
	·				
a)	3N	b) 3	c) N		
4)	If a rigid body is rotating v	with angular velocity	ω about an instantaneous axis through a		
,			vector J about the same point		
a)	Will be always in the direct		1		
) Will be always perpendicular to ω				
c)	May be in the direction of				
5)	The body coordinate system is frame of reference.				
	Non-inertial		c) Inertial and non-inertial		
b)	Inertial				
6)	A rigid body can have two	types of motion,	·		
a)	Rotation and vibration		c) Translation and vibration		
b)	Translational and rotational	al			
7)	In a rigid body three equations of constraints are represented as				
a)	$(r_i - r_j)^2 = a \ constant$				
b)	$(r_i - r_i)^2 \neq a constant$		c) $\left(r_i^2 - r_i^2\right)^2 = a \ constant$		
	The quantities like I_{xx} , I_{yy}	, Izz are called as	3 -		
	Products of inertia				
b)	moment of inertia	c) measures of	inertia		
9)	In rotational motion of a rumomentum are in general_	•	ons of angular velocity and angular		
a)	Different		c) parallel to each other		
b)	Antiparallel to each other				

10)		is sy	mmetric and it has only		independent
	components.				
a)	Two	b)	Four	c)	Six
	The physical quantity, mome Two		inertia is a tensor of rank One		zero
	12) If I_1 , I_2 , and I_3 represent principal moments of inertia of a rigid body and $\omega = \omega_1 \omega_2 \omega_3$ is angular velocity with components along three principal axis,				
a)		ie ac	ting on the body in general is N_1	3 =	$I_3\omega_3$ +
b)	$(I_2 - I_1)\omega_1\omega_2$ For torque free motion of a ri	gid ł	body, always we have $I_3\omega_3=c$	ons	stant
			ting on the body in general is N_3		
Short answer question					
 What is rigid body? Write down the equation of constraints for such a body. Derive an expression for kinetic energy of a rigid body in the component form. Write a note on inertia tensor Explain the term moment of inertia and products of inertia. The directions of angular velocity vector and angular momentum vector are in general different. Comment. 					
Long a	answer question				
 State and prove Euler's theorem about the motion of a rigid body. Show that directions of vector of angular velocity (ω) and angular momentum (L) are different in angular motion of the rigid body. Derive Euler's equation of motion for a rigid body with fixed point. If a rigid body, with one point fixed, rotating with an angular velocity (ω) and angular momentum (L), show that the kinetic energy is ½ Lω. 					
5)			lar momentum of a rigid body in	ı co	mponent form.
Unit II – 2. Special theory of relativity					
Multip	ole choice question				
1) The	e velocity of light in free space	e is _	·		
a) Con	stant c)	Infi	nite		
b) Zero	o d	Rel	ative		

2) In Michelson Morley interferometer, a beam of lupon glass plate	light from a monochromatic source falls				
a) semi silvered	c) plane				
b) silvered	d)opaque				
3) In Galilean relativity the transformation equation	n for x coordinate from S to S' is				
a) $x' = vt - x$	c) $x' = \frac{x - vt}{\sqrt{1 - v^2/c^2}}$				
b) $x' = x - \frac{vt}{c^2}$	•				
	d) x' = x - vt				
4) The wavelength of matter wave is independent of	of				
a) mass	c) momentum				
b) velocity	d) charge				
5) The accelerated frames are					
a) inertial	c) stationary				
b) non-inertial	d) moving				
6) The special theory of relativity was developed by					
a) Einstein	c) Lorentz				
b) Newton	d) Galileo				
7) In relativistic velocity addition theorem					
a) $u = \frac{u' + v}{\frac{u'v}{c^2}}$	c) $u = u' + v$				
	d) $u = u'$				
b) $u = \frac{u' + v}{1 + \frac{u'v}{c^2}}$					
8) Einstein's first postulate in special theory of relativity is true in frame of					
references.					
a) inertial	c) non inertial				
b) accelerated	d) circular				
9) The inertial frame of reference isframe of reference					
a) an accelerated	b) an unaccelerated				

c) a rotating	d) an oscillating
10) Lorentz transformation reduces to Galilian trans	sformations when
a) V>>C	c) V= C
b) V< <c< td=""><td>d) V= 1/C</td></c<>	d) V= 1/C
11) For the moving observer, the time interval appe	ars to be
a) remains constant	c) lengthened
b) increase to infinity	d) shortened
12) The Lorentz transformation equation of time she	ows that the space and time are not
two Entities.	
a) related	c) independent
b) equivalent	d)dependent
13) For moving observer length appears to be	
a) remains constant	c) dialated
b) increase to infinity	d) contracted
14) Who formulated first the classical theory of rela	tivity?
a) Einstein	c) Lorentz
b) Newton	d) Galileo
15) The non- inertial frame of reference is	frame of reference
a) an accelerated	c) a rotating
b) an unaccelerated	d) an oscillating
16) Mass increases with velocity by the relation	
a) $m = \frac{m_0}{\sqrt{1 - \frac{v^2}{c^2}}}$	c) $m = \frac{m_0}{1 - \frac{v^2}{c^2}}$
b) $m = m_0 \sqrt{1 - \frac{v^2}{c^2}}$	$d) m = \frac{m_0}{1 - \frac{vt}{c^2}}$

17) According to the principle of invariance the equ	nations of motion of a particle would be			
exactly the same in all frames of reference.				
a) inertial	c) rotating			
b) non-inertial	d) accelerated			
18) The purpose of Michelson-Morley experiment was				
a) To measure variable speed of light through ether:				
b) To calculate absolute velocity of earth through ether.				
c) To verify the length contraction in the direction of motion.				
d) To verify the time dilation				
19) According to Einstein, velocity of light in free space is				
a) dependent of the direction of propagation	c) a constant			
b) variable	d) infinite			
20) The body coordinate system is aframe of reference.				
a) non inertial	c) both inertial or non inertial			
b) inertial	d) either inertial or non inertial			

Short answer question

- 1) State and explain the Einstein's postulates of the special theory of relativity.
- 2) Deduce the expressions for variation of length with velocity.
- 2) Deduce the expressions for variation of $m = \frac{m_0}{\sqrt{1 v^2/c^2}}$
- 4) Explain the concept of time dilation.
- 5) Derive the mass energy relation.
- 6) Write notes on Inertial frame of reference.
- 7) Write notes on Non-inertial frame of reference.
- 8) Write notes on Galilean transformations.
- 9) Write notes on The ether hypothesis.

Long answer question

- 1) Describe the Michelson-Morley experiment. How the negative result is interpreted?
- 2) Write down the Lorentz transformation equations. Derive them on the basis of special theory of relativity.
- 3) Derive the formula for the relativistic addition of velocities