Multiple Choice Questions

Functions and Countable Sets

1.	If $A = \{x \in \mathbb{N} \mid 2x - 1 \text{ is even}\}$ and $B = \{x \in \mathbb{R} \mid x^2 - 9 = 0\}$ then which of the following				
	statements is true.				
	a) A is empty and	l B is empty			
	b) A is nonempty	and B is empty			
	c) A is nonempty	and B is nonempty	V		
	d) A is empty and	l B is nonempty			
2.	If $A = \phi$ and $B = \{ \phi \}$	b} then which of the	following statemen	nts is true.	
	a) $\phi \in A$	b) $A \subset B$	c) $B \subset A$	d) $B = \phi$	
3.	If $f: R \to R$ is give	en by $f(x) = x^2 + 1$,	then $f^{-1}(-5)$ is		
	a) -5	b) 5	c) <i>\phi</i>	d) 0	
4.	If $f: R \to R$ is give	en by $f(x) = x^2$ then	the range of f is		
	a) R		c) N		
	b) R_1 (the set of n	onnegative real nur	mbers) d) Z		
5.	If $f: R^+ \to R$ (whe	ere R^+ is the set of p	positive real numbe	ers) is given by $f(x) = \log x$	
	then the set $\{x \mid f(x)\}$	(x) = -2 is			
	a) φ	b) -2	c) e^2	d) e^{-2}	
6.	If $f: R \to R$ is give	en by $f(x) = x $ then	f is		
	a) Injection	b) surjection	c) bijection	d) none of the above	
7.	Which of the follo	wing statements is	correct?		
	a) $a \in \{a,b,c\}$	b) $\{a\} \in \{a,b,c\}$	c) $a \subset \{a,b,c\}$	d) $\{\{a\},b,c\}\subseteq\{a,b,c\}$	
8.	If C and R be the s	sets of complex and	real numbers respo	ectively. If $f: C \to R$ is	
	given by $f(z) = z $	then f is			
	a) One-one	b) onto	c) one-one and on	to d) neither one-one	
	nor onto	,	,	,	
9.	The set $\{x \mid x < 7\}$ is	s the interval			
	a) (0, 7)	b) (-∞,7)	c) [0, 7]	d) (-∞,7]	
10		then the number of			
		b) 4	c) 5	d) 2	
11	If P is the set of pr	ime integers, then y	which of the follow	ing is true	

	a) $7 \in P$	b) 11 <i>∉ P</i>	c) $9 \in P$	d) $\{7\} \subset P$.
12.	Set of real number	ers is		
4	A) Uncountable		C) finite	
]	B) Countable		D) none of the	ese
13.	If f is a function	from A into A	B with range of $f = I$	f then f is called
	A) Onto		C) one-one and	d onto
]	B) One-one		D) none of the	ese
14.	A function $f: A$	$\rightarrow B$ is called a	one-one corresponde	ence between A and B , if
	A) f is neither on	e-one nor onto)	
]	B) f is one-one a	nd onto		
(C) f is one-one b	ut not onto		
]	D) f is not one-or	ne but onto		
15.	If $f: A \to B$ and i	$f f(a_1) = f(a_2)$	implies $a_1 = a_2$ for a	ll $a_1, a_2 \in A$, then f is called
	function.			
	A) Onto		C) one-one and	d onto
]	B) One-to- one		D) none of the	ese
16.	Set of all rational	numbers in (0	,1) is	
4	A) Finite		C) countable	
]	B) Uncountable		D) none of the	ese
17.	If f and g are tw	vo functions w	ith respective domain	ns X and Y then g is called
(extension of f on	to <i>Y</i> if		
	A) $X \supset Y$ and if f	f[X] = g[X], for	$x \in X$	
]	B) $X \subset Y$ and if f	f[X] = g[X], for	$r \text{ all } x \in X$	
(C) $X \subset Y$ and if f	$f[X] \neq g[X]$, for	$x \in X$	
]	D) $X \supset Y$ and if f	$f[X] \neq g[X]$, for	$x \in X$	
18.	A function $f: A$	$\rightarrow B$ is called a	one-one corresponde	ence between A and B , if
	A) f is one-one b	ut not onto		
	B) f is one-one a			
	C) f is not one-or			
	D) f is neither on)	
	The set of is u			
	A) Positive intege		C) rational nui	mbers
	B) Integers		D) real numbe	
	-			

20	0. If $f(x) = 1 + \sin x$ ($-\infty < x < \infty$) and $g(x) = x^2$ ($0 \le x < \infty$) then $g \circ f(x) =$				
	A) $1 + \sin^2 x$ ($-\infty$	$(x < \infty)$			
	$B) 1 + 2\sin x + \sin^2 x$	$(0 \le x < \infty)$			
	C) $1+\sin^2 x (0 \le x)$	$<\infty$)			
	$D) 1 + 2\sin x + \sin^2 x$	$(-\infty < x < \infty)$			
21	. If $f: A \to B, X \subset A$	$A, Y \subset A$, then $f(X \cap A)$	γY) is		
	A) Equal to $f(X)$	$\cup f(Y)$			
	B) Equal to $f(X)$	f(Y)			
	C) Not necessarily	equal to $f(X) \cap f(X)$	<i>Y</i>)		
		equal to $f(X) \cup f(X)$			
22	. The set of rational	I numbers is			
	A) Countable		C) finite		
	B) Uncountable		D) none of these		
23	. If $g(x) = x^2 (0 \le x < x)$	(∞) , then $g^{-1}(x)(0)$	$\leq x < \infty$).		
	A) x^2	B) <i>x</i>	C) $x^{3/2}$	D) $x^{1/2}$	
24			at is bounded below	w, then A has in R .	
	A) A greatest lower				
	B) A least upper b	ound			
	C) Upper bound				
	D) None of these				
25	Let f be a real value.	llued function descr	$f(x) = x^2(-1)$	$\infty < x < \infty$). Then $f([0,3)) =$	
		D) (0, 01	C) [0 0)	D) [0 0]	
	A) $(0, 9)$	B) (0, 9]	C) [0, 9)	D) [0, 9]	

Mathematical Induction

1. The validity of statement p(n) is proved by using mathematical induction for even

- a) Real number
- b) integer c) natural number d) rational number

2.	Well ordering principle states that has a element.	every nonempty sul	bset of natural number N
	a) One b) infinite	c) no	d) least
3	The condition p(1) is true is		,
٥.	mathematical induction.	condition for pro	oving varially of p(n) by
		b) sufficient	
	b) Necessary and sufficient		v nor sufficient
4	If p(n) is true for $n = n_0$ and p(k) is		
т.			
	mathematical induction is called		
_		c) regular	
Э.	By mathematical induction, the res		
	a) $n \ge 2$ b) $n \ge 3$		
6.	The result $n^2 < 2^n$ for all $n \in N$ is real.	not true for all $n \in \mathbb{N}$	
	a) Not true for n=1	. 41. C 1 . 1	c) both a) and b)
7	b) Truth for n=k does not imply tr		
/.	By using second version of mather		
	$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \dots + \frac{7}{\sqrt{n}} > 1$	\sqrt{n} is true for all	
	a) $n \ge 1$ b) $n \ge 2$	c) $n \ge 3$	d) $n \ge 4$
8.	The result for every subset S of N $$	if $1 \in S$ and for ever	$Y K \in N, \{1,2,3,\} \le S$
	then S=N is called		
	a) Principle of Mathematical indu	ction	
	b) First version of Mathematical in	nduction	
	c) second version of Mathematica	l induction	
	d) principle of strong induction		
9.	The result for every nonempty set	S of N if $1 \in S$ and f	for every $K \in \mathbb{N}, K \in S$
	then $K+1 \in S$ then S=N is called		
	a) Principle of Mathematical indu	ction	
	b) First version of Mathematical in	nduction	
	c) second version of Mathematica	l induction	
	d) principle of strong induction		
10	.The result n=n+2 is false by mathe	ematical induction b	ecause
	a) It is not true for n=1		c) both a) and b)
	b) Truth for n=k does not imply tr	uth for n=k+1	d) none of these

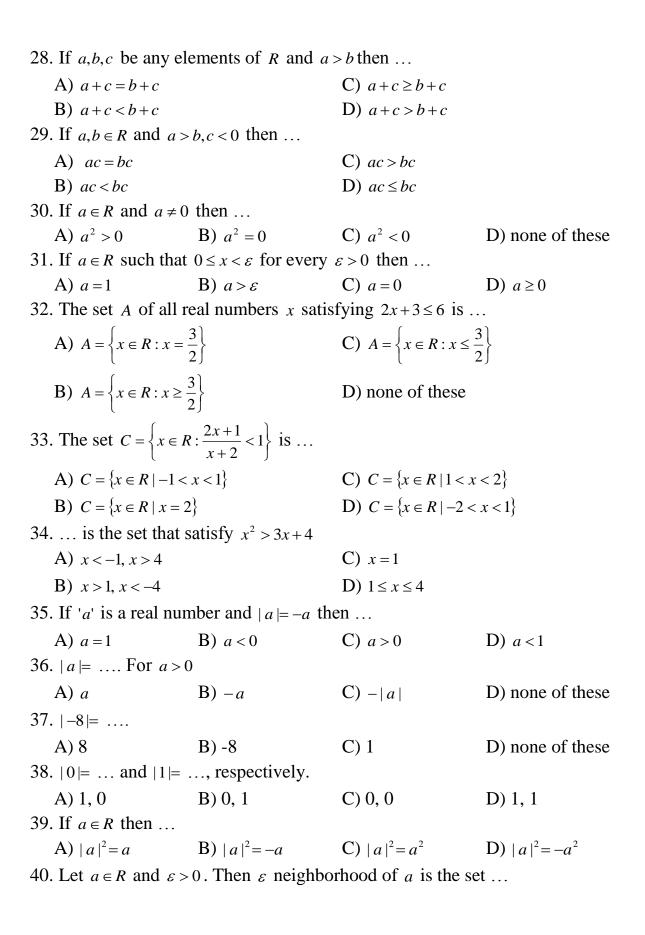
Countable Sets

1.	Every 1-1 corre	spondence is		
	a) One-one	b) onto	c) countable	d) all a), b), c).
2.	The function f	$f(x) = x^2, x \in R \text{ is } \dots$		
	a) One-one		b) onto	
	c) neither one-o	ne nor onto	d) none of these	
3.	The set of ration	nal numbers is		
	a) Finite	b) countable	c) uncountable	d) none of these
4.	The set of natur	al numbers is	••••	
	a) Finite	b) countable	c) uncountable	d) none of these
5.	The set of integ	ers is		
	a) Finite	b) countable	c) uncountable	d) none of these
6.	The set of real r	numbers is		
	a) Finite	b) countable	c) uncountable	d) none of these
7.	The closed inter	val [0, 1] is	•••	
	a) Countable		c) neither countain	ble nor uncountable
	b) Uncountable	;	d) finite	
8.	The open interv	al (0, 1) is	. •	
	a) Countable		c) neither countain	ble nor uncountable
	b) Uncountable	;	d) finite	
9.	The set of ration	nal numbers in [0, 1] is	
	a) Countable		c) neither countain	ble nor uncountable
	b) Uncountable	;	d) finite	
10	.The Cartesian p	roduct $Z \times Z$ where	Z is the set of integer	ers is
	a) Countable		c) neither countain	ble nor uncountable
	b) Uncountable		d) finite	
11	.The Cartesian p	roduct of two count	able sets is	
	a) Countable		c) neither countain	ble nor uncountable
	b) Uncountable		d) finite	
12	The function $f($	$(x) = \cos x \text{ in } [0, 1] \text{ is}$	·	
	a) One-one	b) onto	c) one-one and or	nto d) none of these

13	13. The union of countable sets is					
a) Countable			c) neither countab	c) neither countable nor uncountable		
	b) Uncountable		d) no	ne of these		
14	.If the set A is equ	ivalent with set of i	ntegers	s then the set A is		
	a) Finite	b) countable		c) uncountable	d) none of these	
15	.The set of all orde	ered pairs of integer	s is	• • • • • • • • • • • • • • • • • • • •		
	a) Finite	b) countable		c) uncountable	d) none of these	
16	.The set of all poly	nomial functions w	ith inte	eger coefficients is		
	a) Finite	b) countable		c) uncountable	d) none of these	
		The R	eal N	lumbers		
1.	Greatest lower bo	und of set of all pos	sitive e	ven integers is		
	a) 0	b) 2	c) 1		d) none of these	
2	The least upper bo	ound of the set $\left\{\frac{1}{n}\right\}$	$n \in N$	is		
	The least apper of	n		15		
	A) 1	B) 0	C) -1	D) no	one of these	
3.	Between any two	distinct real numbe	rs ther	e exists		
	A) Only one ratio	nal number				
	B) Finite number	of rational numbers	S			
	C) Infinitely many	y rational numbers				
	D) None of these					
4.	If u is an upper both	ound of a set A of r	eal nu	mbers and $u \in A$, th	en <i>u</i> is	
	A) Infimum of A			C) supremum of A	4	
	B) Both infimum	and supremum of A	4	D) neither infimu	m nor supremum	
5.	A subset A of rea	l numbers is said to	be bo	unded if it is		
	A) Bounded above	e				
	B) Bounded above	e as well as bounde	d belo	W		
	C) bounded below	V				
	D) none of these					
6.	Supremum of the	set $\left\{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \dots\right\}$ is	S			
	A) 0	B) 1	C) ½	D) 1/4		
7.	Every non-empty	subset S of R which	h has a	lower bound has		

	A) Infimum	R) supremum	C) no infimum	D) none of these	
8.	A) Infimum B) supremum C) no infimum D) none of these S. If x and y are real numbers, which of the following is always true?				
	A) $ x-y \le x - y $		C) $ x-y \ge x - y $	_	
	B) $ x-y \ge x + y $		D) $ x-y = x - y $		
9.	Any non-empty sub	set of real numbe	rs which is bounded	d below has	
	A) Infimum		C) supremu		
	ŕ	nd supremum of A		nfimum nor supremum	
10	. The supremum of a	a set A of real nur	mbers, if it exists is	•••	
	A) Unique		C) three		
	B) Two		D) none of these		
11	.The least upper bou	and of the set $\left\{\frac{3n-1}{2n}\right\}$	$\left. \frac{+2}{+1} \right n \in N $ is		
	A) 3/5		C) 1/5	D) 1/3	
12	12. The greatest lower bound of the set $\left\{ x \in Q \mid x = \frac{(-1)^n}{n}, n \in N \right\}$ is				
	A) 0	B) 1	C) -1	D) 2	
13	. For what value of r	m, such that $ f(x) $	≤m for all x satisfy	ring 2≤x≤3 where f is	
	defined by				
		$f(x) = \frac{2x^2 + 3x + 1}{2x - 1}$	for $2 \le x \le 3$.		
	A) 23/3		C) 28/3	D) 29/3	
14	. If a and b are real				
	A) $ a+b = a + b $		$C) \mid a+b \mid \leq a$	$(a + b \leq a + b \leq a + b)$	
	B) $ a+b \ge a + b $		D) $ a+b < a $	$a \mid + \mid b \mid$	
15	. If a and b are real	l numbers then			
	A) $ a-b \ge a + b $		C) $ a-b = a-b $	$a \mid + \mid b \mid$	
	B) $ a-b > a + b $		D) $ a-b \leq a-b $	$a \mid + \mid b \mid$	
16. If then $ a+b = a + b $, where $a,b \in R$					
		B) $ab=0$	C) $ab < 0$	D) $ab \le 0$	
17	. If a and b are real	l numbers then			
	A) $ a-b \leq a - b $		$C) \mid a-b \mid \geq a$	$a \mid - \mid b \mid$	
	B) $ a-b \ge a - b $		D) $ a-b = a-b $	$a \mid - \mid b \mid$	
18	18 is unbounded set.				

$A) \left\{ x \mid x = \frac{1}{n}, n \in N \right\}$	$\mathbf{C}) \left\{ x \mid x = n^2, n \in N \right\}$
$\mathbf{B)} \left\{ x \mid x = \frac{1}{2^n}, n \in N \right\}$	D) none of these
19. The least upper bound of the set $\left\{\frac{1}{n}, n\right\}$	$i \in N$ is
A) 1 B) 0	C) -1 D) ½
20. Between any two real numbers there	exist rational numbers.
A) No	C) finite number of
B) 1	D) infinitely many
21. If M is an upper bound of a set A of	real numbers and $M \in A$, then M is
A) Infimum of A	C) supremum of <i>A</i>
B) Both infimum and supremum of A	D) none of these
22. Any nonempty subset of real numbers	s which is bounded below has
A) supremum	C) both infimum and supremum
B) neither infimum nor supremum	D) infimum
23. A subset A of real numbers is said to	be bounded if it is
A) Bounded above	C) bounded below
B) Both bounded above and bounded	below D) none of these
24 is a countable set.	
A) [0,1] B) [0,1)	C) $(0,1)$ D) $\left\{0,\pm\frac{1}{n}, n \in N\right\}$
25. Which of the following set is countab	le?
A) {1,4,9,16,25,}	C) all rational numbers
$\mathbf{B)}\ \left\{2n:n\in N\right\}$	D) all irrational numbers
26. Point out the wrong statement of the	following:
A) The countable union of countable s	_
B) If A and B are countable, then $A \times A$	
C) The Cartesian product $N \times N$ is und	
D) The set of real numbers is uncountain	
•	numbers satisfying $a \in P$ or $a = 0$ or $-a \in P$.
This property is called	, .
A) Symmetry property	C) trichotomy property
B) Triangular inequality	D) none of these
·	



A) $V_{\varepsilon}(a) = \{x \in$	$R: x-a =0\}$	C) $V_{\varepsilon}(a) = \{x \in$	$R: x-a > \varepsilon$			
B) $V_{\varepsilon}(a) = \{x \in$	$R: x-a \leq \varepsilon$	D) $V_{\varepsilon}(a) = \{x \in$	$R: x-a < \varepsilon$			
41. Let $a \in R$, if	x belongs to the neighbors	ghbor $V_{\varepsilon}(a)$ for ever	ery $\varepsilon > 0$ then			
A) $x = a$	B) $x = \frac{a}{2}$	C) $x = 2a$	D) $x = a^2$			
42. Every nonem	42. Every nonempty set of real numbers that has an upper bound also has a in R.					
A) Supremum	in R					
B) Infimum in	ı R					
C) Both infim	num and supremum i	n R				
D) None of th	ese					
43. Every nonem	pty set of real numb	ers that has an upp	er bound also has a supre	emum		
in R is called						
_	eteness property					
B) Archimede	1 1 v					
C) Supremum						
D) None of th		1 .1 .				
	there exits $n_x \in N$ s					
$A) x = n_x$	B) $x > n_x$	C) $x \ge n_x$	D) $x \le n_x$			
45. If $x \in R$, then	there exits $n_x \in N$ s	uch that $x \le n_x$. Th	is is			
A) The compl	eteness property					
B) Archimede	ean property					
C) The densit	y theorem					
D) None of th	ese					
46. If $S = \left\{ \frac{1}{n} : n \in \right\}$	N , then inf $S = \dots$					
A) ∞	B) 1	C) 0	D) 2			
47. If x and y and	e real numbers with	x < y, then there	exists a rational number	$r \in Q$		
such that $x < x$	r < y. This is					
A) Archimede	ean property					
B) The suprer	num property					

C) The density theorem

D) The completeness property

48. Sup
$$\left\{1 - \frac{1}{n} : n \in N\right\} = \dots$$

A)0

B) 1

- C) -1
- D) ∞

- 49. The entire set R
 - A) Is a finite interval
 - B) Is an infinite interval
 - C) Has 1. u. b.
 - D) Has g. l. b.
- 50. If S is subset of R that contains at least two points and has the property, if $x, y \in S$ and x < y, then $[x, y] \subseteq S$, then S is an interval. This is ...
 - A) Archimedean property
 - B) The supremum property
 - C) The density theorem
 - D) Characterization theorem
- 51. The set $C = \{x \in R : |x-1| < |x|\}$ is ...

A)
$$C = \left\{ x \in R : x < \frac{1}{2} \right\}$$

C)
$$C = \left\{ x \in R : x > \frac{1}{2} \right\}$$

B)
$$C = \left\{ x \in R : x = \frac{1}{2} \right\}$$

D)
$$C = \left\{ x \in R : x \ge \frac{1}{2} \right\}$$

- 52. ... are the values of x that satisfy 3x-1 = |x-7|.
 - A) $x \ge 5$
- B) x = 6
- C) $x \le 6$
- D) $5 \le x < 6$