Total	No.	of Pages	:3
-------	-----	----------	----

t					
3				177.4	
	000000				

Sc. (Part - II) (Semester - III) (CBCS) Examination, January - 2023 ANALYTICAL CHEMISTRY (Paper - IX)

ACH 3.1: Advanced Analytical Techniques (New)

Sub. Code: 80489/85284

ý	and	Date	: Thursday,	05 - 01	- 2023	

Total Marks: 80

me: 02.30 p.m. to 05.30 p.m.

tructions:

11)

- 1) Attempt in all the five questions. All questions carry equal marks.
- 2) Question No. 1 is compulsory.
- 3) Attempt any two questions from section I and any two from Section II.
- 4) Answers to all questions from should be written in one answser book.
- 5) Figures to the right indicate full marks.

Ans	wer the following questions.		[16]
a)	Mass spectra can be obtained in	and	mode.
b)	Diamond and graphene are allotropes of is and respectively.	f carbon and the	eir hybridization
c)	What are Quantum dots?		
d)	Scanning electron microscopy produc	es	images.
e)	The kinetic energy of the photoelectron of the atom, which makes XPS useful	energies is deper to identify the o	ndent on xide state.

- f) What is topdown approach for synthesis of nanomaterial?
- g) What is the source used in Raman spectroscopy?
- h) How are ions separated in mass spectrometry?
- i) Compare between molecular ion peak and base peak.
- j) How is sample prepared prior to SEM analysis?
- k) Why ultrahigh vacuum is required in TEM when compared to SEM?

1)	ESCA means
m)	SIMS means
n)	Compare between SEM and SIMS.
0)	List the types of ions observed in mass spectra.
p)	Define 1D nanomaterial.
	SECTION - I
Q2) a)	What is mass analyzer? List the type of mass analyzers and explain the working of any one.
b)	Explain the principle and working of MALDI-TOF. State its applications, [4]
c)	What is tandem mass spectrometry? Explain its significance in analytical chemistry. [4]
Q3) a)	Define the term nanomaterial. What are the different types of synthesis of nanomaterials? Explain one chemical method for the synthesis of nanomaterial justifying the role of the reagents used. [8]
b)	Write note on applications of nanotechnology. [4]
c)	A cube of 1m ³ was sliced into thin nanosheets of 5 nm thickness to form a sheet of the dimensions (1m x1 m x 5nm). How many sheets would be formed and what area would it cover? [4]
Q4) a)	Explain the terms in nanotechnology,
	i) agglomeration ii) reducing agent
	iii) capping agent iv) size distribution.
	Describe with suitable example. [8]
1	Ellaborate the concept of hard and soft ionization in mass spectrometry. [4]
	c) Write note on the detector used in mass spectrometer. [4]

6		SH - 129)
Y33		SECTION - II	
<u></u>	a)	Write note on principle, instrumentation and application of Transmission Electron Microscope (TEM). [8]	
	b)	State the applications of Raman Spectroscopy in Nanotechnology. [4]	
	c)	What are the different scanning modes used in AFM? State its advantage and disadvantages. [4]	
26)	a)	Write short note on Scanning Tunneling Microscopy and its applications [8	;.]
	b)	State the principle and applications of SIMS. [4	1
	c)	Compare between X-ray Photoelectron Spectroscopy and Auger Electro Spectroscopy. [4]	n
Q 7) Wr	ite short note on any four of the following [16	1
	a)	Biological synthesis of nanoparticles	
	b)	Chemical ionization	

- Analytical applications of Electron Spin Resonance Spectroscopy (ESR).
- Physical synthesis of nanomaterial.
- Compare between SEM and TEM.