B.Sc. (Part-I) (Semester-I) (CBCS (NEP2020)) Examination, March 2024

Balasaheb Desai College, Patan

STATISTICS

Sub. Code: 88183

Elementary Probability Theory (Paper – II)

Day and Date	: Monday	Total Mar	Total Marks: 40		
Time: 10:30 a	.m. to 12:	Period: 2 Hours			
				Total Pa	ges: 01
Instructions:	i) All que	estions are compulsory	у.		
	ii) Figure	es to the right indicate	full marks.		
Q.1 Choose the	most corr	ect alternative:			(08)
1) If Ω is the	he sample s	space and B be the event	defined on Ω then $B \cup \Omega$	Ω is	
a) B		b) Ω	c) 	d) B ^c	
2) Event A	and B are	said to be Exhaustive ev	ents if		
a) A ∩E	$\mathbf{B} = \mathbf{\phi}$	b) $A \cup B = \Omega$	c) $A \cup B = \phi$	d) none of these	
3) Comple	mentation of	of events A means the se	et of points that belongs to	0	
a) only in A b) A		b) All in Ω but not	in A c) All in Ω	d) both in Ω and A	
4) The odd	ls in favor o	of an event C are 2:7 the	$P(C) = \dots$		
a) 2/7		b) 2/9	c) 7/9	d) 7/2	
5) If sampl	le space Ω :	$= \{a, b, c\}, P(a) = 0.3 \text{ an}$	d P(b) = 0.4 then P(c) =		
a) 0.7		b) 0.5	c) 0.3	d) 0.06	
6) If $A \subseteq B$	B then P(A	B) =			
a) P(A)	ı	b) P(B)	c) $P(A)/P(B)$	d) 1	
7) If X is a	discrete r.v	v. with mean $E(X)$, then	$E[(X-E(X))]^2$ is called		
a) Mean	l	b) Variance	c) S.D.	d) Median	
8) If F(x) i	s the distrib	oution function of randor	n variable X then $P(a < X)$	$X \leq b$) =	
a) F(a)		b) F(b)	c) $F(a) - F(b)$	d) F(b) - F(a)	
Q. 2 Attempt an	y <i>two</i> of the	e following.			[16]
1) With us	ual notatior	n show that $0 \le P(A \cap B)$	$(A \cap B) \leq P(A \cup B) \leq P(A \cap B)$	A) + P(B)	
2) A rando	m variable	X has the following pro	bability distribution		

	X	- 3	- 2	2	3	
	P(x)	С	3c	3c	С	
Find	i) k	ii) E(X)	iii) E(X ²)	iv) V(iv) V(X)	

- 3) If A and B are two independent events then show that
 - i) A and B^C are independent ii) A^C and B^C are independent

Q. 3 Attempt any *Four* of the following.

[16]

- 1) If P(A) = 0.3, P(B) = 0.2 and $P(A \cup B) = 0.4$ then find $P(A \cap B)$ and $P(A \cap B^c)$
- 2) Explain the Power set with suitable example.
- 3) Write symbolic representation and draw the Venn diagram of the statements i) Event A occurs but not B ii) neither A nor B occurs.
- 4) Define with example i) Random Experiment ii) Sample space
- 5) Define i) Probability mass function (p.m.f.) ii) Cumulative distribution function (c.d.f.)
- 6) How to obtain mean and variance using probability generating function (p.g.f.)