FUNCTIONS OF COMPLEX VARIABLE

Functions of Complex Variable:

f(z) is a function of a complex variable z and is denoted by w.

i.e.
$$w = f(z)$$

Where w = u+iv and u is a real part & v is a imaginary part.

Differentiability:

Let f(z) be a single valued function of the variable z, then

$$f'(z) = \lim_{\delta z \to 0} \frac{f(z+\delta z)-f(z)}{\delta z}$$

Provided that the limit exists and independent of the path along which $\delta z \rightarrow 0$.

Analytic Function:

A function f(z) is said to be analytic at a point z_0 if it is differentiable not only at z_0 but at every point of some neighborhood of z_0 .

Necessary condition for f(z) to be analytic:

The necessary condition for a function f(z) = u+iv to be analytic at all points in a region R are

$$i)\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$

ii)
$$\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x} \ provided \ \frac{\partial u}{\partial x} \ , \frac{\partial u}{\partial y} \ , \frac{\partial v}{\partial x} \ , \frac{\partial v}{\partial y} \ exists.$$

Note:
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \& \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
 are known as Cauchy Riemann equations

SUFFICIENT CONDITION FOR F(Z) TO BE ANALYTIC:

Sufficient condition for f(z) to be analytic:

The sufficient condition for a function f(z) = u+iv to be analytic at all points in a region R are

i)
$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}$$
 , $\frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$

ii) $\frac{\partial u}{\partial x}$, $\frac{\partial u}{\partial y}$, $\frac{\partial v}{\partial x}$, $\frac{\partial v}{\partial y}$ are continuous functions of x and y in region R.

Note: i)
$$\frac{\partial u}{\partial x} = \lim_{h \to 0} \frac{u(0+h,0) - u(0,0)}{h}$$

ii)
$$\frac{\partial u}{\partial y} = \lim_{k \to 0} \frac{u(0,0+k) - u(0,0)}{k}$$

iii)
$$\frac{\partial v}{\partial x} = \lim_{h \to 0} \frac{v(0+h,0)-v(0,0)}{h}$$

iv)
$$\frac{\partial v}{\partial y} = \lim_{k \to 0} \frac{v(0,0+k) - v(0,0)}{k}$$

C-R EQUATIONS IN POLAR FORM:

$$\frac{\partial u}{\partial r} = \frac{1}{r} \frac{\partial v}{\partial \theta}$$

$$\frac{\partial u}{\partial \theta} = -r \frac{\partial v}{\partial r}$$

Derivative of w in polar form:

$$\frac{dw}{dz} = (\cos\theta - i\sin\theta) \frac{\partial w}{\partial r}$$

$$\frac{dw}{dz} = -\frac{i}{r}(\cos\theta - i\sin\theta) \frac{\partial w}{\partial \theta}$$

Harmonic function:

Any function which satisfies Laplace's equation is known as harmonic function.

Laplace's equations:
$$\nabla^2 u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2} = 0$$

$$\nabla^2 v = \frac{\partial^2 v}{\partial x^2} + \frac{\partial^2 v}{\partial y^2} = 0$$

MILNE THOMSON METHOD (To construct an Analytic function)

Working rule:

Case 1. When u is given

- Step1. Find $\frac{\partial u}{\partial x}$ and equate it to $\emptyset_1(x,y)$.
- Step2. Find $\frac{\partial u}{\partial y}$ and equate it to $\emptyset_2(x,y)$.
- Step3. Replace x by z and y by 0 in $\emptyset_1(x, y)$ to get $\emptyset_1(z, 0)$.
- Step4. Replace x by z and y by 0 in $\emptyset_2(x, y)$ to get $\emptyset_2(z, 0)$.
- Step5. Find f(z) by the formula $f(z) = \int {\{ \emptyset_1(z,0) i \emptyset_2(z,0) \}} dz + c$

Case II. When v is given

Step1. Find
$$\frac{\partial v}{\partial x}$$
 and equate it to $\varphi_2(x,y)$.

Step2. Find
$$\frac{\partial v}{\partial y}$$
 and equate it to $\varphi_1(x,y)$.

Step3. Replace x by z and y by 0 in $\varphi_1(x, y)$ to get $\varphi_1(z, 0)$.

Step4. Replace x by z and y by 0 in $\varphi_2(x, y)$ to get $\varphi_2(z, 0)$.

Step5. Find f(z) by the formula $f(z) = \int {\{\varphi_1(z,0) + i\varphi_2(z,0)\}} dz + c$

Case III. When u - v is given

We know that

$$f(z) = u + iv \dots \dots \dots (1)$$

 $if(z) = iu - v \dots \dots \dots (2)$

Adding (1) & (2) we get

$$(1+i)f(z) = (u-v) + i(u+v)$$

=> $F(z) = U + iV$ $U = (u-v)$

Where
$$F(z) = (1+i)f(z) \dots (3)$$
 $V = (u+v)$

Here U = (u - v) is given. Find F(z) by using case I, then from (3) find

$$f(z) = \frac{F(z)}{1+i}$$

Case IV. When u + v is given

We know that

$$f(z) = u + iv \dots \dots \dots (1)$$

 $if(z) = iu - v \dots \dots \dots (2)$

Adding (1) & (2) we get

$$(1+i)f(z) = (u-v) + i(u+v)$$

=> $F(z) = U + iV$ $U = (u-v)$

Where
$$F(z) = (1+i)f(z) \dots (3)$$
 $V = (u+v)$

Here V = (u + v) is given. Find F(z) by using case II, then from (3) find

$$f(z) = \frac{F(z)}{1+i}$$

Complex Integration

Evaluation of line integral:

If
$$f(z) = w = u(x, y) + iv(x, y)$$
, then since $dz = dx + idy$.

We have
$$\int_c f(z)dz = \int_c wdz$$

$$= \int_c (u+iv)(dx+idy)$$

$$= \int_c (udx-vdy)+i\int_c (vdx+udy)$$

This shows that the evaluation of the line integral of a complex function can be reduced to the evaluation of two line integrals of real functions.

Cauchy's Integral Theorem:

If a function f(z) is analytic and its derivative f'(z) continuous at all points inside and on a simple closed curve z, then $\int_{C}^{z} f(z)dz = 0$.

Cauchy's Integral Formula:

If f(z) is analytic within and on a closed curve c, and if a is any point within c, then

$$\int_{c} \frac{f(z)}{z-a} dz = 2\pi i f(a)$$

In general,

$$\int_{C} \frac{f(z)dz}{(z-a)^{n+1}} = \frac{1}{n!} 2\pi i f^{n}(a)$$

The Calculus of Residues:

Zero of Analytic Function:

A zero of analytic function f(z) is the value of z for which f(z) = 0.

Singular Point: A point at which a function f(z) is not analytic is known as a singular point or singularity of the function.

Isolated singular Point:

If z=a is a singularity of f(z) and there is no other singularity within a small circle surrounding the point z=a, then z=a is said to be an isolated singularity of the function f(z); otherwise it is called non-isolated.

For example, the function $\frac{1}{(z-1)(z-3)}$ has two isolated singular points, namely

$$z = 1$$
 and $z = 3$.

Example of non-isolated singularity:

The function $\frac{1}{\sin\frac{\pi}{z}}$ is not analytic at the points where $\sin\frac{\pi}{z}=0$ i. e. at the points

$$\frac{\pi}{z} = n\pi \ i. \ e.$$
 at the points $z = \frac{1}{n} (n = 1, 2, 3,)$. Thus $z = 1, \frac{1}{2}, \frac{1}{3}, = 0$

Are the points of singularity. z=0 is the non isolated singularity of the function $\frac{1}{\sin\frac{\pi}{z}}$ because in the neighborhood of z=0, there are infinite many other singularities.

Pole of order m: Let a function f(z) have an isolated singular point z=a, f(z)

Can be expanded in a Laurent's series around z = a, giving

$$f(z) = a_0 + a_1(z - a) + a_2(z - a)^2 + \dots + \frac{1}{(z - a)^m} \{b_1(z - a)^{m-1} + b_2(z - a)^{m-2} + \dots + b_m\}$$

Then z=a is said to be a pole of order m of the function f(z), when m=1 the pole is said to be simple pole.

Method of finding Residues

(a) Residue at simple pole:

If f(z) has a simple pole at z = a, then

$$Res(at z = a) = \lim_{z \to a} (z - a) f(z)$$

(b) Residue at a pole of order n:

If f(z) has a pole of order n at z = a, then

$$Res(at \ z = a) = \lim_{z \to a} \frac{1}{(n-1)!} \left\{ \frac{d^{n-1}}{dz^{n-1}} [(z-a)^n f(z)] \right\}$$

(c) Residue Theorem:

If f(z) is analytic in a closed curve C, except at a finite number of poles within C, then

$$\int_{C} f(z) dz = 2\pi i (sum of residues at the poles within C)$$

EVALUTION OF REAL DEFINITE INTEGRALS BY CONTOUR INTEGRATION

(a) INTEGRATION ROUND UNIT CIRCLE OF THE TYPE

$$\int_0^{2\pi} f(\cos\theta, \sin\theta) \, d\theta$$

Where $f(\cos\theta, \sin\theta)$ is a rational function of $\cos\theta$ and $\sin\theta$

Method:-

Convert $sin\theta$, $cos\theta$ into z

Consider a circle of unit radius with centre at origin, as contour.

$$sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{2i} = \frac{1}{2i} \left[z - \frac{1}{z} \right], cos\theta = \frac{e^{i\theta} + e^{-i\theta}}{2} = \frac{1}{2} \left[z + \frac{1}{z} \right]$$
Where $z = re^{i\theta} = 1$, $e^{i\theta} = e^{i\theta}$

As we know

$$z=e^{i\theta}$$
 , $dz=e^{i\theta}id\theta=zid\theta$ or $d\theta=rac{dz}{iz}$

The integrand is converted into a function of z. Then apply Cauchy's residue theorem to evaluate the integral.

(b) Evaluation of $\int_{-\infty}^{\infty} \frac{f_1(x)}{f_2(x)} dx$ where $f_1(x)$ and $f_2(x)$ are polynomials in x.

Such integrals can be reduced to contour integrals, if

- (i) $f_2(x)$ has no real roots.
- (ii) The degree of $f_2(x)$ is greater than that of $f_1(x)$ by at least two.

Procedure: Let
$$f(x) = \frac{f_1(x)}{f_2(x)}$$

Consider $\int_{C} f(z)dz$ where C is a curve, consisting of upper half C_{R} of the circle |z| = R and part of real axis from -R to R.

If there are no poles of f(z) on the real axis, the circle |z| = R which is arbitrary can be taken such that there is no singularity on its circumference C_R in the upper half of the plane, but possibly some poles inside the contour C specified above.

Using Cauchy's theorem of residues, we have

$$\int_{C} f(z)dz = 2\pi i (sum of the residues of f(z)at the poles within C)$$